

Technical White Paper

© November 2007 VeriFone, Inc.
PCC-5-7-1 SP8b

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

2

Notice

Copyright © November 07 VeriFone, Inc. All rights reserved. active-Charge, active-Charge SDK,
PCCharge Payment Server, PCCharge Pro, PCCharge DevKit, Virtual-Charge, IP-Charge are trademarks
and PC-Charge is a registered trademark of VeriFone, Inc.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. Other brands
and their products are trademarks or registered trademarks of their respective holders and should be
noted as such.

© VeriFone, Inc.
Chatham Business Center
8001 Chatham Center Drive, Suite 500
Savannah, Georgia 31405
Development Support: (877) 659-8983
Technical Support: (877) 659-8981
Fax: (912) 527-4596

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

3

Table of Contents

Software License...4

Introduction ...5
PCCharge DevKit..5
PCCharge DevKit Suite...5

Product Components..6
PCCharge DevKit..6
PCCharge DevKit Development Support..6
PCCharge Pro and PCCharge Payment Server...6

Payment Types Supported ...6
Hardware Devices Supported...7
Reporting ..7
Security...8
Database Support...8
Utilities ..8

Integration Methods..9
OCX Method ...9
DLL Method...9
OLE/COM Method...10
File Method ...10
TCP Interface ..11

PCCharge DevKit Development Support..12

API Documentation Example ...13
PSCharge.dll Charge Class..13

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

4

Software License

1. GRANT OF LICENSE. VeriFone, Inc. grants you the right to use a single copy of this Software,

including documentation, on one computer of your choice. You may physically transfer each License,
without cost, to a different computer, providing it is removed from the first computer. Please
remember that when you buy Software, you are actually buying the rights to use the Software on one
computer at a time. It is against Federal laws to use this Software on more than one computer at a
time.

2. RESTRICTED USE. The Program may not be copied except for backup purposes. Copying of the

Manual and Interface Specifications is prohibited. You may not remove any product identification,
copyright, or other proprietary notices from the Software or Documentation.

3. WARRANTY. VeriFone, Inc. warrants that the original compact disc is free from defects in material
and workmanship for a period of 30 days from the date of purchase. If a defect occurs during this
time, VeriFone, Inc. will replace your compact disc free of charge.

4. DISCLAIMER. The PCCharge DevKit package is Licensed on an "as is" basis. There are no
warranties, expressed or implied, including, but not limited to, warranties of merchantability, of fitness
for a particular purpose, and all such warranties are expressly and specifically disclaimed. VeriFone,
Inc. shall have no liability or responsibility to you or any other person or entity with respect to any
liability, loss, or damage caused or alleged to be caused directly or indirectly by the PCCharge
DevKit. Use of the PCCharge DevKit system signifies agreement with this disclaimer and is subject to
the License Agreement provided with the installation compact disc.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

5

Introduction

Thank you for your interest in the PCCharge DevKit with its associated suite of products.

VeriFone, Inc. is committed to providing integrators and merchants with the most comprehensive
electronic payment processing solutions available today. If you have any suggestions as to how we can
improve our products, support, or documents, please call us at (877) 659-8983 or e-mail us at
devsupport@verifone.com.

This chapter is an introduction to the PCCharge DevKit. It will familiarize you with the various components
and typical uses of this bundle of products.

PCCharge DevKit

The PCCharge DevKit is a bundle of applications, tools, code examples, and documents used to enable
electronic payment processing in third party applications. The PCCharge DevKit is designed to guide
developers while they are building an interface in their application to PCCharge Payment Server and/or
PCCharge Pro.

The PCCharge DevKit includes evaluation copies of PCCharge Pro and PCCharge Payment Server for
use only during integration and testing.

PCCharge DevKit Suite

The PCCharge DevKit Suite is also a bundle of applications, tools, code examples, and documents used
to enable electronic payment processing in third party applications. In fact, the manual, media, code
examples, etc. are identical to those in the PCCharge DevKit. The only difference between the two
products is that the PCCharge DevKit Suite contains the following licenses which allow live payment
processing:

• One (1) live license for either PCCharge Payment Server or PCCharge Pro.
• One (1) Unlimited User license that can be activated within PCCharge Payment Server or

PCCharge Pro.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

6

Product Components

PCCharge DevKit

The PCCharge DevKit is this manual and a group of examples of the various interface methods available
to integrate payment processing into applications. Sample code for FoxPro, VB.NET, VB6, C#.NET,
Access, Java, Delphi 7, ASP, ASP.NET and Cold Fusion is included to demonstrate the OCX (ActiveX),
DLL (ActiveX), OLE (COM), TCP Interface, and File Methods of integration.

PCCharge DevKit Development Support

The PCCharge DevKit includes three hours of telephone developer support to be used within twelve
months. After that, a DevKit upgrade may be purchased in order to receive three additional hours of
support.

Consultative coding support is $1500 per day at the VeriFone, Inc. offices in Savannah, Georgia or $1500
per day plus travel and expenses at the developer’s location.

PCCharge Pro and PCCharge Payment Server

The PCCharge DevKit includes copies of PCCharge Payment Server and PCCharge Pro. PCCharge
Payment Server and PCCharge Pro are the transaction engines that handle all payment processing
requests submitted by the third-party integrated application.

Both PCCharge Payment Server and PCCharge Pro include a GUI (Graphical User Interface) that is used
for setup. This GUI can also be used for reporting, settlement, maintenance, and transaction processing if
needed. When distributing an integrated application, either PCCharge Payment Server or PCCharge Pro
must be installed and activated on the merchant’s computer or on a computer located in the merchant’s
LAN in order to enable payment processing.

The following outlines the features of PCCharge Pro and PCCharge Payment Server:

Payment Types Supported

Credit Cards -- PCCharge supports credit card transaction processing according to specifications of
supported payment processors for the following major credit cards: VISA, MasterCard, Discover,
American Express, Optima, Carte Blanche, Diner’s Club, and some private label cards.

Debit Cards – PCCharge supports debit card transaction processing according to specifications of
supported payment processors for both online (ATM) and offline debit cards.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

7

Checks – PCCharge supports verification and conversion of a variety of types of paper-based checks
including personal, government, payroll, travelers, and so forth. When performing verification
transactions, primary and secondary forms of identification are accepted for each check type according to
the specifications of the supported check processors.

EBT – PCCharge supports EBT transaction processing according to the specifications of the supported
payment processors for both food stamp and cash benefit transactions.

Gift Cards – PCCharge supports gift card processing according to the specifications of the supported
payment processors. PCCharge includes support for the following gift card programs (availability
depending on processor): loyalty transactions, points-based transactions, multiple issuance, and standard
transactions (Sale, Void, etc.).

Hardware Devices Supported

The PCCharge graphical user interface (GUI) includes support for many industry-standard hardware
devices in addition to new devices that support the OPOS standard. Some of these devices are accessed
via a standard COM port, whereas others may be connected to the keyboard (PS2) port. The devices
include, but are not limited to the following:

• Report Printers
• Receipt Printers
• Magnetic Stripe Readers
• PINpads
• Check Readers

Note: In order for an integrated application to support these types of devices, the developer must create
an interface to each hardware device that will be supported. Some devices simulate keyboard entry (such
as Magnetic Stripe Readers) and do not require any special coding to support. However, some devices,
such as PINpads, require a complete integration such as a serial port interface. VeriFone, Inc. provides
an ActiveX control and an OLE/COM class that can be used to integrate to some PINpads. To support
PINpads and other hardware that are not included in the control or the class, check with the various
hardware providers for information on hardware integration.

For a current list of the hardware devices that are supported by the PCCharge GUI, visit the VeriFone,
Inc. website at http://www.verifone.com.

Reporting

The following reports are available in PCCharge. All reports contain filters (such as date, card number,
member name, and so forth), allowing applications to designate the specific information to appear on the
reports. All reports can be viewed on the screen if using the PCCharge GUI. Integrated applications can
request that reports be sent to a printer or written to a file.

Check Summary Report – This report summarizes information for check transactions that have been
performed.

Credit Card Detail Report – This report summarizes information for credit card transactions that have
been performed. The reports show line item detail for each transaction.

Batch Pre-Settle Report – This report lists transactions that have been authorized but not settled.

http://www.gosoftware.com/

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

8

Batch Post-Settle Report – This report lists transactions that have been settled.

Security

Transaction Database Encryption -- PCCharge automatically encrypts account numbers within the
program’s database. Account numbers appearing will show only the first and last four digits of the
account number.

PIN Encryption -- PCCharge supports PIN data entry devices (as listed in previous sections) for use with
online debit card processing. Each PINpad supported by PCCharge supports one or more of the two
following PIN encryption standards:

1. Derived Unique Key Per Transaction (DUKPT) -- Derives a transaction key for the current or
next transaction from the previous key plus other data. The scheme generates keys based on a
finite list known only to the host and PIN-pad. The key sequence is unique to each PINpad,
resulting in a unique key per transaction. DUKPT is the standard in the U.S., with other DUKPT
schemes internationally.

2. Master/Session Key Management -- In this method, a key is injected into the PINpad in a

secure environment. This "master" key is not used to encrypt PINs. Instead, it is used to decrypt a
session or working key that has been encrypted by the host (using the master key) then
transmitted over the network to the PINpad. This session key is used to encrypt PINs. The
session key can be changed as frequently as every transaction. This encryption method is being
phased out in the U.S.

Database Support

PCCharge uses a Microsoft Access database to store and maintain transaction information. This open-
architecture, industry-standard database is accessible through ODBC drivers, DAO or ADO.

Utilities

PCCharge includes a number of utilities to facilitate maintenance of the system. These include the ability
to back up and restore data files, compact and repair the database, archive transaction history, as well as
a number of modem detection and configuration options.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

9

Integration Methods

There are five PCCharge integration methods available. The five integration methods are:

1) OCX (ActiveX)
2) DLL (ActiveX)
3) OLE/COM
4) File Method
5) TCP Interface

Note: Integration methods 1 and 2 (OCX, DLL) can either create a text file that is sent to and processed
by PCCharge, or the TCP/IP functionality of the OCX or DLL can be used. Thus, all three of these
integration methods are essentially sending transaction information to PCCharge via the File Method or
TCP/IP. These three integration methods provide various classes, which include properties and methods
to simplify integration. The properties and methods are very similar between the three integration
methods, making it relatively easy to migrate from one to the other if needed.

OCX Method

The OCX Method should be considered if programming will occur in a visual environment that supports
ActiveX technology and all client machines that will process transactions are Windows-based.

The OCX controls are visual wrappers around code to create an XML file containing transaction data.
Also, the OCX controls handle all of the file I/O (Input / Output) and automatically parse the output file that
is created and returned by PCCharge. All of these operations are done by setting properties, calling
methods, and monitoring events fired by the OCX controls. The use of events allows for asynchronous
communication to PCCharge.

Note: In a client/server environment, the directory in which PCCharge resides must be shared so that the
clients that are generating transactions have read, write, and execute permissions.

DLL Method

If programming will occur in a Windows programming environment that does not support the ActiveX OCX
technology, then consider using the DLL Method (PSCharge.dll).

PSCharge.dll is a wrapper around code to create an XML file containing transaction data. Also,
PSCharge.dll handles all of the file I/O (Input / Output) and automatically parses the output file that is
created and returned by PCCharge. All of these operations are done by setting properties and calling
methods that are provided by PSCharge.dll. PSCharge.dll performs processing in a synchronous manner.

Note: If the application will be web-based (e.g., a shopping cart, eCommerce-enabled website, etc.),
and will be hosted on a Windows-based web server, consider using the DLL Method. Web-based
languages such as ASP and Cold Fusion support referencing DLLs.

Note: In a client/server environment, the directory in which PCCharge resides must be shared so that the
clients that are generating transactions have read, write, and execute permissions.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

10

OLE/COM Method

If programming will occur in a Windows programming environment that allows directly referencing the
exposed classes of an executable, then consider the OLE/COM method of integration.

The OLE/COM Method makes it possible to completely hide the PCCharge interface from the user. All
aspects from setup and configuration to processing transactions can be done programmatically. It is
possible to make calls to set properties or show PCCharge forms by accessing the classes exposed
through OLE/COM. All processing is done by setting properties, calling methods, and monitoring events.
The use of events allows for asynchronous communication to PCCharge. The OLE/COM method also
supports synchronous communication to PCCharge.

Note: In order to use the OLE/COM Method, PCCharge must reside on the same computer as the
integrated application. The OLE/COM Method will not typically work in a client/server environment (i.e.,
multi-user or multi-station).

Note: When new versions of PCCharge are released (and the OLE/COM Method is used to integrate with
PCCharge), the integrated application must be re-compiled for it to support these new versions. This is a
limitation of OLE/COM, not of the PCCharge products.

File Method

The File Method is typically used by integrators who prefer to handle the creating, reading, and parsing of
XML files themselves. All of the required file I/O and polling must also be handled by the integrator. The
widest variety of programming languages support the File Method. Integration via the File Method is
required if programming will occur in an environment that does not support ActiveX, OLE/COM, or socket
communications. When integrating via the File Method, the message format used to communicate with
PCCharge is XML.

The primary benefits to using the File Method are:

• It is operating system independent.
• It can be used in any programming language that supports file I/O.

In addition, the PCCharge File Method is very similar to the File Method for RiTA Server and IPCharge.
RiTA Server, designed by VeriFone, Inc., is an enterprise level payment processing product. IPCharge,
designed by VeriFone, Inc. is a web based Payment Gateway. If the integrator feels that an integration to
the RiTA Server or IPCharge products might occur in the future, migration to RiTA or IPCharge products
is easier if the File Method is used when integrating with PCCharge.

Note: Although the File Method is operating system independent, PCCharge must be running on a
Windows machine somewhere on the network—only the client machines may run on other operating
systems.

Note: In a client/server environment, the directory in which PCCharge resides must be shared so that the
clients that are generating transactions have read, write, and execute permissions.

Note: If the application will be web-based (e.g., a shopping cart, eCommerce-enabled website, etc.), the
File Method may be used. Many Web based languages support file I/O.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

11

TCP Interface

Any integrator using a programming language that supports the use of TCP/IP communication should
consider utilizing the TCP Interface method.

The primary advantage of using the TCP Interface method is that it is not file-based. This provides
several benefits to the integrator:

• When PCCharge is used in a client/server environment, the TCP Interface does not require that

the PCCharge directory be shared on the network. All other integration methods require that the
PCCharge directory be shared on the network in a client/server environment.

• The TCP Interface utilizes the operating system’s TCP/IP stack and does not require any
additional controls or additional object overhead to perform payment processing.

• The TCP Interface is operating system independent.

In addition, the PCCharge TCP Interface method is very similar to the TCP Interface method for RiTA
Server and IPCharge. RiTA Server, designed by VeriFone, Inc., is an enterprise level payment
processing product. IPCharge, designed by VeriFone, Inc. is a web based Payment Gateway. If the
integrator feels that an integration to the RiTA Server or IPCharge products might occur in the future,
migration to RiTA or IPCharge products is easier if the TCP Interface is used when integrating with
PCCharge.

Note: Although the TCP Interface method is operating system independent, PCCharge must be running
on a Windows machine somewhere on the network—only the client machines may run on other operating
systems. In a client/server environment, the client machines must have TCP connectivity to the Windows-
based computer on which PCCharge resides.

Note: If the application will be web-based (e.g., a shopping cart, eCommerce-enabled website, etc.),
consider using the TCP Interface. Web based languages usually support socket communication.

When integrating via the TCP Method, the message format used to communicate with PCCharge is XML.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

12

PCCharge DevKit Development Support

The PCCharge DevKit includes three hours of telephone developer support to be used within twelve
months. After that, a DevKit upgrade may be purchased in order to receive three additional hours of
support.

Consultative coding support is $1500 per day at the VeriFone, Inc. offices in Savannah, Georgia or $1500
per day plus travel and expenses at the developer’s location.

Developer Support Contact Information

Toll-free support hotline (877) 659-8983

E-mail address devsupport@verifone.com

Developer Support Hours

9:00 AM to 7:00 PM ET Weekdays

During normal working hours, requests for callbacks and e-mail responses are fulfilled within 24 hours.
Weekend, holiday and off-shift support can be pre-arranged during normal business hours.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

13

API Documentation Example

The following is an example of the API documentation that is available within the PCCharge DevKit
manual.

PSCharge.dll Charge Class

The Charge class of PSCharge.dll provides integrators with properties and methods used to submit credit
card transactions to PCCharge. To use the Charge class to integrate transaction processing, follow the
procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a ° in the Charge
Class properties table are the minimum required to process a Sale or Pre-Authorization transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that “3” is passed as

a parameter to activate the XML message format)

4. Wait for the transaction to process and then call the various .Get methods to determine the outcome

of the transaction (code using the .Get methods may be placed immediately after the Send method).
The most important information can be acquired by calling the GetResult and GetAuth methods. If an
error occurs, call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

5. Call the DeleteUserFiles method to delete all files related to the transaction.

6. Call the Clear method to reset all the properties and methods related to the transaction or destroy the

object.

Charge Class Properties

Property Data Type Description - Charge Class Properties

Action° Long The action code that identifies what type of transaction will be performed. Consult the
section DevKit Constants for a list of valid values.

Amount° String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9 characters,
including the decimal. The value may not be negative. Do not use commas. Note: The
amount MUST include the decimal point and the cents even if the amount is a whole
dollar amount. Example: “3.00”, not “3” or “3.”. If sending less than one dollar, the zero
place holder must be sent as well. Example: “0.50”.

AmxChargeDescription String

The American Express Charge Description. This is a general description describing
merchandise: the AMEX representative and the merchant will decide on an appropriate
description. Note: Only Required for Retail, MOTO and Restaurant transactions when
using AMEX direct settlement or TSYS. Max Length: 23 bytes

AmxDescription_1 String

American Express Description data. Additional description or information about
merchandise—if populated, should be printed on the receipt. Note: Only used for Retail
transactions when using AMEX direct settlement. Max Length: 40 bytes
This field is optional and should only be provided if the transaction will be settled directly
with Amex or TSYS.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

14

Property Data Type Description - Charge Class Properties

AmxDescription_2 String

American Express Description data. Additional description or information about
merchandise—if populated, should be printed on the receipt. Note: Only used for Retail
transactions when using AMEX direct settlement. Max Length: 40 bytes
This field is optional and should only be provided if the transaction will be settled directly
with Amex or TSYS.

AmxDescription_3 String

American Express Description data. Additional description or information about
merchandise—if populated, should be printed on the receipt. Note: Only used for Retail
transactions when using AMEX direct settlement. Max Length: 40 bytes
This field is optional and should only be provided if the transaction will be settled directly
with Amex or TSYS.

AmxDescription_4 String

American Express Description data. Additional description or information about
merchandise—if populated, should be printed on the receipt. Note: Only used for Retail
transactions when using AMEX direct settlement. Max Length: 40 bytes
This field is optional and should only be provided if the transaction will be settled directly
with Amex or TSYS.

AuthCode String

The Authorization code. This value is returned by the issuing bank and should only be set
in a transaction request if processing a Post-Authorization and the Post-Authorization is
being used to add a Voice-Authorization to the batch or to “store” a Voice-Authorization.
The AuthCode property does not need to be set if the Post-Authorization completes a
standard Pre-Authorization using the TroutD value of the Pre-Authorization.

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the transaction is
being ran for payment of a bill (utility, monthly gym dues, etc.) Valid values:
0 – Non-Bill payment transaction
1 – Bill payment transaction

Card° String The credit card number that will be used when processing the transaction. Max Length:
20 characters. Example: 5424180279791765

CardPresent String

For Retail or Restaurant transactions: Flag that indicates whether the card was
present.
For eCommerce transactions: Flag that indicates what type of transaction occurred.
Valid values:
0 = Card not present, 1 = Card present (for Retail, MOTO, or Restaurant);
D = Digital goods, P = Physical goods (for eCommerce)

CheckCard Boolean

Flag that indicates whether to activate credit card validity testing. Valid Values: TRUE;
FALSE. Default value: TRUE. This value must be set to FALSE when performing
Follow on transactions such as Voids or Gratuities because the card number is omitted
from these transaction requests.

Command String

The action code that identifies what type of transaction will be performed. Valid Values:
1-10, 13-15, ZI, ZH. Example: If running a credit card sale, set the action code to “1”.
Consult the section DevKit Constants for a list of valid values. Note: Because the Action
property is defined as “long”, this property was added to allow action codes that contain
strings (such as Transaction Inquiry - ZI). If the Command property is set, it’s value will
override the value set in Action.

CommercialCardFlag String

The type of commercial card being submitted. The getCommercialCardType method
should be used to retrieve the 1 character value from PCCharge that indicates what type
of commercial card will be submitted. Max Length: 1 character
Valid values:
B – Business
P,L,G -- Purchase
C – Corporate
F – Fleet

CommMethod Enum

Specifies which communication method will be used.
0 – File_Transfer
1 – TCP/IP
Please refer to page 20 for a description of these methods.
If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also be set. If
File_Transfer is set then the Path property must be set.

CustCode String

Customer code for purchasing/commercial cards. This property must be set for
commercial card transactions in order to get the best discount rate. Additionally, the
transaction’s action code must indicate that the transaction is a commercial card
transaction. Note: Global East (NDC), terminal based, requires the customer code be all
upper case. Max Length: 25 characters, alphanumeric only.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

15

Property Data Type Description - Charge Class Properties

CreditPlanNumber String The credit plan number, only applicable when using Citi as the processor for private label
cards.

CVV2 String

The CVV2 value for the transaction. The card verification value (CVV2 for Visa, CVC2 for
MasterCard, and CID for AMEX and Discover) is a 3 or 4 digit number that is embossed
in the signature panel for Visa, MasterCard, and Discover and on the front of the card for
AMEX. All AMEX cards utilize a 4 digit CID. Max Length: 4 characters. CVV2 should
only be passed on non-swiped transactions.

Demo Boolean

The demo mode flag. In demo mode, a simulated response is returned in which even
amounts return approved, and odd amounts return declined. Valid Values:
TRUE – Activates demo mode
FALSE – Deactivates demo mode (default)

DEST_ZIP_CODE String

Destination Zip Code for American Express purchasing/commercial cards. This property
must be set for American Express commercial card transactions when using American
Express as the processor (or via split dial) in order to get the best discount rate.
Additionally, the transaction’s action code must indicate that the transaction is a
commercial card transaction.

DriverID String Driver identification field. Only required for Wright Express, Voyager and Fleet One
cards.

DriverPIN String Driver personal identification number. Only required for Fuelman cards.

EstGratuityAmount String

For use with Restaurant transactions only. The estimated gratuity amount for a Sale
(action code 1) or Pre-Authorization (action code 4) transaction. If the
EstGratuityAmount is populated, PCCharge will submit the sum of the values in the
Amount and EstGratuityAmount fields for authorization. If the transaction is authorized,
only the value in the Amount field will be placed in the PCCharge settlement file (if
running a Sale). By using the EstGratuityAmount, the merchant can help ensure that the
customer has enough available credit on their card to leave a tip. Once the customer
indicates the amount of the tip that will be left, a gratuity transaction (action code 13)
must be performed on the sale prior to settlement in order to add the actual gratuity to the
transaction. Format: DDDDDD.CC. Max Length: 9 characters, including the decimal.
The value may not be negative. Note: The amount MUST include the decimal point and
the cents even if the amount is a whole dollar amount. Example: “3.00”, not “3” or “3.”. If
sending less than one dollar, the zero place holder must be sent as well. See the section
Restaurant Transactions for more information. Note: It is recommended to check with
the processor or merchant service provider for guidance on what amount to set this value
to. Incorrectly setting this value can result in downgrades.

ExpDate° String The expiration date associated with the credit card number that will be processed. Must
be exactly four characters long. Format: MMYY Example: 1208

EnableSSL Boolean For use with TCP/IP CommMethod only. SSL is not yet available with PCCharge.
Leave this set to false.

GratuityAmount String
For use with Restaurant transactions only. The actual gratuity amount for a Sale with
Gratuity (action code 14) , Gratuity (action code 13) , or Post-Authorization (action code
5) transaction. See the section Restaurant Transactions for more information.

IDNumber String Only required for Voyager cards, dependant on Restriction Code. Four to six digits. Note:
Only used for Pre-Authorization transactions

Index Long

The Merchant Number index. If Index is set to a value greater than 0, the Charge class
will access the file tid.pcc file and use the merchant number at that index in the file. Index
and Path should be set prior to calling the GetCompanyCity, GetCompanyName,
GetCompanyState, GetCompanyStreet, or GetCompanyZip methods. The index of the
merchant number is determined by the order that it was added to PCCharge. For
example, the first merchant number added to PCCharge will have an index of “1”, the
second, “2”, etc.

IPAddress String For use with TCP/IP CommMethod only. IPAddress of machine where PCCharge is
running. Defaults to 127.0.0.1

ItemID String

The Item ID for the transaction. This field is only used for Chase Paymentech (GSAR)
and can store five (5) four-digit codes that are defined by Chase Paymentech. Example:
If the ItemID is set to 00010002000300040005, it stores 5 item IDs (0001, 0002, 0003,
0004, and 0005). These numbers must be obtained from Chase Paymentech.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

16

Property Data Type Description - Charge Class Properties

LastValidDate String

The last year that will be considered a valid expiration date. Currently, the default value in
the charge class is “09”. It is recommended that a setting is provided by which the end-
user can change this property; otherwise, in the future, end users will require a new
PSCharge.dll to be distributed to resolve expiration date issues. Length: 2 digits.
Format: YY Example: If LastValidDate is set to 05, then cards between 06 and 99 are
considered to be 1906 to 1999, and cards between 00 and 05 are 2000 to 2005.

Manual° Long
Flag that indicates whether the transaction was manually entered or swiped. If the
transaction was swiped, the Track property must also be set. Valid values: 0 = manual
transaction, 1 = swiped transaction

MCSC String
The Multiple Count Sequence Count. This is the total number of installments that will be
charged in a non-restaurant recurring billing scenario. Max Length: 2 characters.
Example: If there are 5 payments to be made, set this property to “5”.

MCSN String

In a restaurant environment: The server or cashier id. Max Length: 2. This field should
be passed for reporting and reconciliation purposes. See the section Restaurant
Transactions for more information.

In a non-restaurant environment, this field is the Multiple Count Sequence Number.
This is the transaction number within the total number of payment installments in a
recurring billing scenario. Max Length: 2 characters. Example: If there are 5 payments
to be made and this transaction is the first transaction, set this property to “1”. The first
transaction should also include the CVV property, but this value should not be stored or
sent for subsequent transactions.

Member String The cardholder’s name. Max Length: 20 characters.

MerchantNumber° *** String

The Merchant Number. This number is issued to the merchant by the Processor or the
Merchant Services Provider. The value set in this property must match what is set up in
the Credit Card Setup window of PCCharge. Max Length: 32 characters. This value
can be alphanumeric.

MTS Boolean No Longer Supported.

Multi String

Flag that indicates whether PCCharge should leave the modem connection open in
anticipation of other transactions that will follow shortly. If set, this value will override the
corresponding value in the PCCharge GUI. Note that PCCharge can only keep the
connection open as long as is allowed by the processing company. Valid values: 1 =
TRUE, 0 = FALSE Default value: 0. See the section Multi-trans Wait for more
information. This Flag has no effect if processing will occur over IP or leased line.

Odometer String The odometer reading. Only required for Fleet One (7 digits), Voyager (7 digits), and
Fuelman (6 digits) cards.

OffLine String

Flag that indicates whether PCCharge should process the transaction offline. If the offline
flag is set, PCCharge will put the transaction into a .BCH file that resides in the
PCCharge directory for importing at a later time. The file can only be imported from the
PCCharge GUI. Valid values: 1 = TRUE, 0 = FALSE

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction response file
(.oux file). The default is 0.25 seconds. This value should only be modified if the
integration is not performing properly. This could be caused if the client machine is slow
or there is network lag that causes the server to spend more time checking for .oux files
than processing transactions.

Path° String

For use with File Transfer CommMethod only. The path to the directory in which the
PCCharge executable resides. This property must be set prior to calling the Send,
PccSysExists, and other methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\
 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters maximum. Must
end with a “\”.

PeriodicPayment String
Flag that indicates whether the transaction is a recurring transaction. Valid values: 1 =
TRUE, 0 = FALSE Note: If periodic payment is set to true, the recurring billing
properties must also be set to achieve the best processing rates.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

17

Property Data Type Description - Charge Class Properties

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This value will
override the corresponding value in the PCCharge GUI. PCCharge will retain this value
for subsequent transactions. Valid values: 0-9. Setting the property to 0 will disable
receipt printing.

Processor° *** String

The code for the processing company that will be used to process the transaction. This
value can be no more than four characters and must be capitalized. The processor
specified in this property must be set up with a valid merchant number in PCCharge. A
list of valid processor codes are listed in the Processing Company Codes section.

° These properties are the minimum required to process a Sale or Pre-Authorization transaction.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators
review the Multi-User Support section. This section contains detailed information about user names and how they should be
implemented.

*** If the “Use Default Processor” option is enabled in the PCCharge preferences, and the Processor and MerchantNumber
properties are omitted from the transaction request, PCCharge will process all transactions using the “Default Processor”. The
“Default Processor” is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support section
for more information on the “Use Default Processor” option. In addition, Processor and MerchantNumber should not be set when
doing follow-on transactions. Refer to the section Follow-on Transactions for more information.

Charge Class Methods

Method Name Returned

Value Description - PccCharge Methods

Cancel None Cancels transaction in progress

CheckPCard Boolean
Used to determine whether a credit card is a commercial card or not. This
method requires that a credit card number be passed as a parameter. Returns
TRUE if a commercial card, FALSE otherwise.

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response files
associated with the transaction. It will delete the files based on the value set in
the User property. The DeleteUserFiles method should be called after the
results have been retrieved from the transaction. If an error occurs while
attempting to delete the files, the Error event will be triggered (if asynchronous)
and the GetErrorDesc method will give a brief description of the error. Consult
the section System Error Codes and Descriptions for a list of valid error
codes and descriptions that will be returned.

GetACI String Returns the Authorization Characteristics Indicator is that is provided by the
card associations. This value is stored for settlement.

GetAddText1 String
Only supported on Fleet One, this field contains miscellaneous additional text
returned from host. Currently PCCharge will support GetAddText1-
GetAddText4.

GetAmountDue String Returns the amount due. Only used for the processor NOVA.

GetAuth String
For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was rejected.

GetAuthAmount String Returns the authorization amount for the transaction. Only used for the
processor NOVA.

GetAVS String

Returns the AVS response code from the issuing bank. If performing Address
Verification on card-not-present transactions, this code indicates how well the
AVS information passed in matches what the issuing bank has on file for the
cardholder. Consult the section DevKit Constants for a description of values
that may be returned.

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as
the result of the transaction. Otherwise, FALSE will be returned. The
GetCaptured method is used to determine if a transaction that will result in a
monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or
declined. A “CAPTURED” response indicates that the transaction has been
approved, and that the transaction has been placed in the open batch.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

18

Method Name Returned
Value Description - PccCharge Methods

GetCreditCardType String

The GetCreditCardType method returns the abbreviation of the credit card
issuer. This method requires that a credit card number be passed as a
parameter. Consult the section DevKit Constants for descriptions of values.
(GetCreditCardType is the same as GetCardIssuer).

GetCCAvailBalance String Returns the PrePaid card balance. Only for pre-paid credit cards with NOVA.

GetCVV2 String

Returns the CVV2/CVC2/CID response code from the issuing bank. If
performing CVV2/CVC2/CID validation on card-not-present transactions, this
code indicates if the CVV2/CVC2/CID code passed in matches what the
issuing bank has on file for the cardholder. Consult the section DevKit
Constants for a description of values that may be returned.

GetDCAvailBalance String Returns the available balance on pre-paid debit cards. Only for pre-paid debit
cards with NOVA.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was encountered
during the use of various methods such as the Send, Cancel, DeleteUserFiles,
and PccSysExists. Consult the section System Error Codes and
Descriptions for a list of valid errors that will be returned.

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that was
encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be
returned.

GetHostType Integer

The GetHostType method returns an integer that indicates if a processor /
merchant number is Host based or Terminal based. GetHostType requires
three parameters:

1) Processor code - Consult the section DevKit Constants for a list of
valid processor codes

2) Merchant account - Must be a valid merchant account set up in
PCCharge

3) TID type - Valid Values for TID type: 0 – Credit; 1 – Check; 2 –
Debit; 3 – EBT; 4 – GiftCard

GetHostType will return one the following values based on the
parameters passed in:
0 – The processor is Terminal based
1 – The processor is Host based
-1 – The processor is a Hybrid (supports both Host and Terminal processing)
or invalid processor / merchant number.
Example: .GetHostType(“VISA”, “999999999911”, 0) will return 0
Note: Chase Paymentech (GSAR), NOVA (NOVA), and FDMS South /
NaBanco (NB) are considered hybrid processors. GetHostType will return a -1
for these processors.

GetIND String
Returns the IND code. The IND code is a transaction description code and an
Interchange compliance field. This value is not returned by all processing
companies.

GetMSI String
Returns the Market Specific Indicator. This value indicates the transaction’s
market segment. This value is assigned by the card associations and is not
returned with all transactions.

GetMerchantNumber String Returns the merchant number that was specified in the MerchantNumber
property.

GetPCard String Returns 1 if PCCharge recognizes the card as a purchasing/corporate card.
Otherwise, PCCharge returns 0.

GetPEM String Returns the Point of Entry Mode that is associated with the transaction. This
value is not returned by all processing companies.

GetRecordCount String The number of records matching the inquiry (ZI command).

GetRefNumber String

Returns the reference number associated with the transaction. The reference
number is assigned by the card associations. The reference number is used to
help identify the transaction and is useful for the cardholder and merchant
when doing research. This value is not returned with all transactions.

GetRespCode String Returns the response code that is provided by the processor. This value is not
returned by all processing companies.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

19

Method Name Returned
Value Description - PccCharge Methods

GetResult String
Returns the result, which indicates the transaction’s status upon completion.
Refer to the Transaction Result Constants section for a list of valid values
and descriptions.

GetRestrictCode String Note: Only supported on Fleet One. The product restriction code.

GetRET String Returns the Retrieval reference number. This value is not returned by all
processing companies

GetTBatch String Returns the active batch number for the transaction. This value is not returned
by all processing companies.

GetTDate String Returns the date that the transaction was processed. This value is not returned
by all processing companies.

GetTI String Returns the Transaction Identifier that is returned from the processor. This
value is not returned by all processing companies.

GetTicket String
Returns the ticket number or invoice of the transaction. This value is echoed
back from the original transaction or is generated by PCCharge if one is
required to complete the transaction.

GetTICode String
Returns the Transaction Indicator Code that is returned from the processor.
The Transaction Indicator Code is a Validation code for VISA / MasterCard.
This value is not returned by all processing companies.

GetTIM String Returns the Time of the transaction. This value is not returned by all
processing companies.

GetTitem String
Returns the Transaction Item number or the number that is associated with the
transaction in the settlement file. This value is not returned by all processing
companies.

GetTraceNumber String Returns the trace number from the processor. Only for pre-paid credit cards
with NOVA.

GetTransNum String
Returns the Internal Sequence Number, which is a PCCharge-assigned unique
number for each transaction. This number is stored in the Number field in the
PCCharge database (PCCW.MDB) for each transaction.

GetTransRecord String Contains nested XML tags providing information on transaction(s) pulled from
Trans table in the PCCharge database (pccw.mdb) (ZI command).

GetTransactionReferenceNumber String Returns the transaction reference number from the processor. Only for pre-
paid credit cards with NOVA.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD is
a PCCharge-assigned unique identifier that is associated with the transaction
throughout its “lifespan”. This number is stored in the TroutD field in the
PCCharge database (PCCW.MDB) for each transaction. See the section
Follow On Transactions for more information.

GetUpdateData String Used internally

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in the
response file associated with the transaction. The response (.oux) file contains
XML string data. The text that is retrieved from the .oux file can be used by
integrators that wish to parse the results of the transaction themselves or for
troubleshooting purposes. Refer to the section File Method for a description of
the tags and values that are returned. Note: This method must be called prior
to calling the DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to
process transactions. If PccSysExists returns TRUE, the file SYS.PCC exists in
the PCCharge directory and PCCharge is not available to process
transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The
GetErrorCode and GetErrorDesc methods will provide information as to why
the file exists. Consult the section System Error Codes and Descriptions for
a list of valid error codes that will be returned. If PccSysExists returns FALSE,
then PCCharge is ready to process transactions.

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

20

Method Name Returned
Value Description - PccCharge Methods

Send None

The Send method creates a text file containing the transaction request and
places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error
occurs while Send executes, the class will set the error code and description,
raise the Error event, and terminate processing. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned.

The Send method has two optional parameters. The first parameter indicates
whether the Send method will process transactions synchronously or
asynchronously. Note: The object must defined to use events in order to allow
asynchronous communication. Valid Values:
True – process asynchronously (Default)
False – process synchronously

The second parameter indicates what message format will be used for the
request and response files. This parameter may be specified by using a
numerical value (or an enumerated value if the programming language being
used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format
parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility
reasons.)

Valid values:
3 (TTYPE_XML) – XML message format – (RECOMMENDED)
Example: Send True, 3
Note: The other values that appear in the enumerated list are for internal use
only-- do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean Returns TRUE for card of correct length
ValidCardLengthII Boolean Returns TRUE for card of correct length

ValidDate Boolean The ValidDate method returns TRUE if the expiration date provided in the
ExpDate property is valid, or FALSE if it is not.

ValidIssuer Boolean Returns TRUE for valid card issuer

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the Amount
property is in a valid format (DDDDDD.CC), or FALSE if it is not. If FALSE is
returned, check the error code to determine the reason for failure. Consult the
section System Error Codes and Descriptions for a list of valid errors that
will be returned.

VerifyCreditCard Boolean

The VerifyCreditCard method returns TRUE if the credit card number’s format
is valid and meets the requirements set forth by the credit card companies,
FALSE if it does not. If FALSE is returned, use the GetErrorCode and
GetErrorDesc methods to determine the reason for failure. VerifyCreditCard
has a required string parameter in which the credit card number to be checked
must be passed.

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in the
ExpDate property is correct and in the right format, or FALSE if it is not.
VerifyExpDate calls the ValidDate function to validate the expiration date. If
FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid
errors that will be returned.

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number that
is passed to it is set up in PCCharge, otherwise, FALSE is returned.
Specifically, this method checks for the merchant number in the file TID.PCC,
which is located in the PCCharge directory. The Path property must be set
before calling this Method.

VerifyProcessor Boolean Returns TRUE if processor is valid

PCCharge DevKit Technical White Paper
Document version 5.7.1i SP8b – last updated 11/13/2007
Copyright VeriFone, Inc. 2007

21

PccCharge Events

Event Name Description - PccCharge Events

Error
The Error event is fired any time an error occurs in the class. Once an Error event has fired, call
GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be returned.

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has
processed the transaction successfully and has placed a file with the extension of .oux in the PCCharge
directory. The name of the .oux file will be what was set in the User property of the transaction request.
Call the GetResult method to determine whether or not the transaction was approved. A list of valid
results can be found in the Transaction Result Constants section.

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error
routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send method.

	 Software License
	 Introduction
	PCCharge DevKit
	PCCharge DevKit Suite
	 Product Components
	PCCharge DevKit
	PCCharge DevKit Development Support
	PCCharge Pro and PCCharge Payment Server
	Payment Types Supported
	Debit Cards – PCCharge supports debit card transaction processing according to specifications of supported payment processors for both online (ATM) and offline debit cards.
	Checks – PCCharge supports verification and conversion of a variety of types of paper-based checks including personal, government, payroll, travelers, and so forth. When performing verification transactions, primary and secondary forms of identification are accepted for each check type according to the specifications of the supported check processors.

	

	Hardware Devices Supported
	Reporting
	Security
	Database Support
	Utilities

	 Integration Methods
	OCX Method
	DLL Method
	OLE/COM Method
	File Method
	TCP Interface

	 PCCharge DevKit Development Support
	Developer Support Contact Information
	Developer Support Hours

	 API Documentation Example
	PSCharge.dll Charge Class
	
	Charge Class Properties
	Charge Class Methods
	PccCharge Events

