

Electronic Payment Processing Software
User‟s Manual

Copyright Feb-10, VeriFone, Inc.
Version 5.9.0

PCCharge Version 5.9.0
Updated 2/8/2010

 2

Notice

VeriFone, Inc. provides this publication ―as is‖ without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of non-infringement, merchantability or fitness for
a particular purpose. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
VeriFone may make improvements and/or changes in the product(s) and/or the program(s) described in
this publication at any time without notice.

Copyright February 10 VeriFone, Inc. All rights reserved. active-Charge, active-Charge SDK,
PCCharge Payment Server, PCCharge Pro, PCCharge DevKit, Virtual-Charge, IP-Charge are trademarks
and PC-Charge is a registered trademark of VeriFone, Inc.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. Other brands
and their products are trademarks or registered trademarks of their respective holders and should be
noted as such.

 VeriFone, Inc.
8001 Chatham Center Drive, Suite 500
Savannah, Georgia 31405
Development Support: (877) 659-8983
E-Mail: devsupport@verifone.com
Technical Support: (877) 659-8981
E-Mail: support@verifone.com

PCCharge Version 5.9.0
Updated 2/8/2010

 3

Table of Contents

Table of Contents ... 3

Software License .. 8

Important Security Notice .. 9
Introduction and Scope .. 9
Application Best Practice ... 9
Password and Account Settings .. 11
Logging ... 12
Wireless Networks .. 13
Network Segmentation .. 13
Secure Remote Software Updates ... 14
Remote Access .. 15
Encrypting Network Traffic ... 16
Training and Communications Program... 16
PA-DSS Version Information ... 17

CHAPTER 1 -- PCCharge DevKit Introduction ... 18
Introduction .. 19

PCCharge DevKit .. 19
PCCharge DevKit Suite ... 19

Product Components .. 20
PCCharge DevKit .. 20
PCCharge DevKit Development Support .. 20
PCCharge Pro and PCCharge Payment Server ... 20

CHAPTER 2 -- Getting Started .. 23
Getting Started .. 24

1) Install the DevKit and the PCCharge Products ... 24
2) Install the Test Merchant Accounts .. 24
3) Verify that PCCharge is Set Up Properly .. 26
4) Determine Which Integration Method Will Be Used ... 29
5) Determine Which PCCharge Product(s) Will Be Supported .. 36
6) Review Payment Processing Basics and Integration Information and Settings 40

CHAPTER 3 -- Payment Processing Basics ... 41
Credit Card Processing ... 42

Host based and Terminal based Processors .. 42
Credit Card Transactions .. 43
A Normal Credit Card Processing Day ... 44
Credit Card Transaction Rates ... 45

Debit Card Processing .. 46
Debit Card Transactions ... 47
A Normal Debit Card Processing Day .. 47

Check Processing .. 48
Check Conversion ... 48
Check Transactions ... 49
A Normal Check Conversion Processing Day ... 49

EBT Processing ... 50
A Normal Day of Processing EBT Transactions ... 51

Gift Card Processing .. 53
A Normal Day of Gift Card Processing .. 53

PCCharge Version 5.9.0
Updated 2/8/2010

 4

CHAPTER 4 -- Integration Information and Settings 54
Warnings, Tips, and Guidelines ... 55
Timeouts .. 59

Understanding Timeouts .. 59
Transaction Delays ... 59
Dial-Up Modem Backup Settings ... 60
Setting the Integrated Application‘s Timeout Value ... 60
Handling Timeouts ... 61

Multi-User Support .. 62
Support for Multiple Workstations ... 62
Support for Simultaneous Transaction Requests .. 63
Setting up Multi-user support .. 64
Additional Users .. 64
Unlimited User License .. 65
Limitations of PCCharge‘s Multi-User Feature .. 66
Alternatives.. 66

Multi-trans Wait ... 67
Multi-Merchant Support .. 68

Multi-Merchant Integration ... 68
Use Default Processor ... 69

SSL Support ... 70
Introduction ... 70
SSL Configuration ... 71
SSL Integration Notes .. 72
Custom SSL Certificates ... 73
Manual SSL Certificate Install .. 74

Cashier Permissions ... 75
Running transactions with cashier credentials .. 83

Follow On Transactions ... 86
Overview ... 86
Examples ... 87
Implementing Follow On Transactions .. 91
Non-TroutD Post-Authorizations ... 92

Commercial Card Transactions .. 94
Overview ... 94
Supporting Commercial Card Transactions .. 94
Using Bin.mdb ... 94
Submitting Commercial Card Transactions .. 96
Example .. 97

Flexible Spending Accounts (FSA/HRA) Transactions ... 98
Overview ... 98
FSA/HRA Examples .. 100

Discretionary Data .. 103
Restaurant Transactions... 104

Overview .. 104
Benefits of XML .. 104
Integration .. 104
Examples .. 105
Processor Specific Notes ... 108

Gift Card Transactions ... 109
VeriFone Stored Value API (GAPI) ... 111
Pre-Paid Credit Card Transactions .. 112
Partial Authorization (Partial Auth) ... 114
Citi© Transactions/ Credit Plan .. 115
Canadian (Interac) Debit Transactions ... 120

PCCharge Version 5.9.0
Updated 2/8/2010

 5

Overview .. 120
Definitions .. 120
Integration Notes .. 121
Integration .. 122
Process Flow when using the processor Global Payments East (NDC) 123
Process Flow when using the processor Chase Paymentech (GSAR) 126

Transaction Inquiry ... 127
Overview .. 127
Usage .. 127
Example ... 129

Batch Settlement ... 130
Overview .. 130
Simple Batch Request ... 130
Multiple Batches ... 131
Amex Settlement .. 132
Gift Settlement .. 136
Batch Totals Storage .. 137
BatchTotals Table ... 137

Health Message Transaction .. 138
Command Line Switches... 139

CHAPTER 5 -- DevKit Constants ...140
DevKit Constants.. 141

Action Codes ... 141
Address Verification Response Codes .. 146
CVV2/CVC2/CID Response Codes ... 147
Credit Card Types ... 147
System Error Codes and Descriptions .. 148
SYS.PCC Codes and Descriptions .. 149
Cashier Permissions Constants .. 150
Processing Company Codes .. 152
Transaction Result Constants.. 154

CHAPTER 6 -- PCCharge Integration Methods ..155
Pseudo-code ... 156

Credit Card Sale/Pre-Authorization – Retail / Card Present ... 157
Credit Card Sale/Pre-Authorization – Card Not Present .. 161
Level II (Commercial, Purchasing, etc.) Card Sale .. 165
Credit Card Void ... 169
Credit Card Sale/Pre-Authorization – Restaurant .. 172
Credit Card Gratuity – Restaurant .. 176
Debit Sale ... 179
Reports .. 183

OCX (ActiveX) Method ... 186
Charge.OCX ... 189
Debit.OCX ... 206
Check.OCX .. 215
EBT ... 222
GiftCard.OCX ... 223
Batch.OCX .. 233
Device.OCX ... 240
SC550.OCX .. 244
SC5X.OCX ... 253
SC5X.OCX Error Codes .. 257
Reporting ... 258

DLL (ActiveX) Method .. 262

PCCharge Version 5.9.0
Updated 2/8/2010

 6

Charge Class .. 263
Debit Class .. 278
Debit Class .. 278
Check Class ... 285
EBT ... 292
Gift Class .. 293
Batch Class ... 302
Offline Class .. 307
Reporting ... 309

OLE/COM Method ... 313
PccCharge Class .. 315
PCCDebit Class ... 329
PccCheck Class ... 336
PCCEBT Class ... 342
PCCGiftCard Class ... 349
PccBatch Class ... 357
PccSettle Class ... 360
PccSettleGift Class .. 363
PccPinPad Class .. 365
PccSC550 Class ... 368
PccBin Class .. 370
Reporting ... 371
Utility Related Classes .. 375
Setup Related Classes .. 379
Classes No Longer Supported / Internal Use Classes .. 477

File Method .. 478
Introduction .. 478
File Method Integration .. 478
File Layout Specifications .. 480
Credit File Layouts .. 483
Debit File Layouts ... 493
Check File Layouts .. 497
EBT File Layouts ... 501
Gift File Layouts ... 505
Batch File Layouts ... 511
Report File Layouts ... 513
Configuration File Layouts ... 515
Various Utility File Layouts .. 516
Cashier Configuration File Layout .. 518

PAYware SIM - SIM.DLL (ActiveX) Method .. 521
PAYware SIM .. 521

CHAPTER 7 -- Code Sample Information ..522
Code Samples ... 523

Java Client .. 523
Web-based Integration Samples ... 525

System Requirements ... 525
PCCharge Virtual Terminal Sample ... 526
ASP Sample ... 531
Cold Fusion ... 532
Java .. 533

General Troubleshooting .. 535
Permissions ... 535

Appendix ...536
Test Credit Cards and Merchant Accounts ... 537

PCCharge Version 5.9.0
Updated 2/8/2010

 7

Test Credit Card Numbers ... 537
Test Track Data .. 538
Test Merchant Account Information .. 539

Integration Troubleshooting .. 544
IODebug.log .. 544
Transaction Request Duplication ... 545
Communication Log ... 545
Error Log .. 546
Troubleshooting a Live Installation... 546
Contacting Support .. 547

Distribution and Deployment ... 548
Distribution Methods .. 548
Demo Mode ... 549
Evaluation Mode ... 549
Warehousing/Block Inventory ... 549
Activation ... 550

Support Policy ... 551
Philosophy .. 551
Contact .. 551
More Information .. 551

PCCharge Version 5.9.0
Updated 2/8/2010

 8

Software License

1. GRANT OF LICENSE. VeriFone, Inc. grants you the right to use a single copy of this Software,

including documentation, on one computer of your choice. You may physically transfer each
License, without cost, to a different computer, providing it is removed from the first computer.
Please remember that when you buy Software, you are actually buying the rights to use the
Software on one computer at a time. It is against Federal laws to use this Software on more than
one computer at a time.

2. RESTRICTED USE. The Program may not be copied except for backup purposes. Copying of the

Manual and Interface Specifications is prohibited. You may not remove any product identification,
copyright, or other proprietary notices from the Software or Documentation.

3. WARRANTY. VeriFone, Inc. warrants that the original compact disc is free from defects in material
and workmanship for a period of 30 days from the date of purchase. If a defect occurs during this
time, VeriFone, Inc. will replace your compact disc free of charge.

4. DISCLAIMER. The PCCharge DevKit package is Licensed on an "as is" basis. There are no warranties,
expressed or implied, including, but not limited to, warranties of merchantability, of fitness for a
particular purpose, and all such warranties are expressly and specifically disclaimed. VeriFone, Inc.
shall have no liability or responsibility to you or any other person or entity with respect to any
liability, loss, or damage caused or alleged to be caused directly or indirectly by the PCCharge
DevKit. Use of the PCCharge DevKit system signifies agreement with this disclaimer and is subject
to the License Agreement provided with the installation compact disc.

PCCharge Version 5.9.0
Updated 2/8/2010

 9

Important Security Notice

Introduction and Scope

PA-DSS / PCI Security Standards Council Requirements:
In June 2001, Visa mandated its Cardholder Information Security Program (CISP). This program
progressed to the Payment Application Best Practices (PABP). PABP is a standard for securing
cardholder data, wherever it is located. Visa requires current DSS / PCI compliance of all entities that
store, process, or transmit Visa cardholder data.

Starting September 30, 2008 this program advances to the Payment Application Data Security Standard
(PA-DSS). This includes all merchants, Integrators and Resellers who use PCCharge to process
transactions. The Payment Card Industry (PCI) Security Standards Council is an open global forum for
the ongoing development, enhancement, storage, dissemination and implementation of security
standards for account data protection.

PCI offers a single approach to safeguarding sensitive data for all card brands. The information below
gives you further detail on DSS / PCI requirements and what you must do to be compliant for the PA-
DSS Payment Application Data Security Standard. These requirements also include that Microsoft
Windows OS restore points be disabled when you are using a Microsoft Windows system to process
transactions.

What is the Payment Application Data Security Standard?
The Payment Application Data Security Standard (PA-DSS) is a set of security standards that were
created by the PCI Security Standards Council to guide payment application vendors in implementing
secure payment applications.

Distribution and Updates
This VeriFone PA-DSS Implementation guide will be disseminated to all relevant application users
including customers, merchants, resellers and integrators. It is updated with each version release and
annually to reflect changes in the PA-DSS standard. The annual review and update will include new
software changes (when applicable) as well as changes in the PA-DSS standard.
Updates to the PA-DSS Implementation guide can be obtained by going to the VeriFone website. In
addition, VeriFone support will publish updates and update notifications as needed.

Versions
This PA-DSS Implementation guide references both the DSS and PCI requirements. The following
versions were referenced in this guide:

 DSS version 1.4

 PCI PA-DSS version 1.1

Application Best Practice

Merchant Applicability
No sensitive Authentication data can be stored. It is the merchant‘s responsibility to remove any
magnetic stripe data, card validation values or codes, PINs or PIN block data, cryptographic key
material, or cryptograms stored by previous versions of the software. Removal of this prohibited
historical data is required for PCI compliance.

Protect Stored Data

 2.2.1 Mask Account Numbers when Displayed.

PCCharge Version 5.9.0
Updated 2/8/2010

 10

 All account numbers are masked when displayed after entry.

 2.2.2 Render Sensitive Cardholder Data Unreadable.

 All sensitive cardholder data is rendered unreadable in PCCharge logs, database, history files
and trace files.

 2.2.3 Protect Encryption Keys against disclosure and misuse.

 Encryption keys are obfuscated to prevent detection and provide encryption.

Secure Deletion Instructions
The following instructions can be used to securely delete prohibited cardholder transaction and
historical data. All sensitive data is masked. The data at deletion can have a null value written in place
of the data and then deleted. Cryptographic data must be removed by a secure delete. Any data
deleted from the database is done via a stored procedure using a SQL DELETE command. This includes
the historical data that must be removed (magnetic stripe data, card validation codes, PINs, or PIN
blocks stored by previous versions of the software). The removal of this data is required for PCI
compliance. This policy is to be reviewed at least annually and updated as the environment changes.

The PA-DSS Requirements Reference:
1.1.4 Securely delete any magnetic stripe data, card validation values or codes, and PINs or PIN block
data stored by previous versions of the software. (PA-DSS 1.1.4)
1.1.5 Securely delete any cryptographic key material or cryptogram stored by previous versions of the
software. This could be a cryptographic key used for computation or verification of cardholder data or
sensitive authentication data. (PA-DSS 1.1.5)

Reseller/Integrator Applicability
It is the responsibility of the reseller or integrator to follow the following guidelines:

 Resellers/integrators must collect sensitive authentication only when needed to solve a specific
problem.

 Resellers/integrators must store such data only in specific, known locations with limited
access.

 Resellers/integrators must collect only the limited amount of data needed to solve a specific
problem.

 Resellers/integrators must encrypt sensitive authentication data while stored.

 Resellers/integrators must securely delete such data immediately after use.

PA-DSS Requirements Reference:
1.1.5c Securely delete any log files, debugging files, and other data sources received from customers
for debugging or troubleshooting purposes, to ensure that magnetic stripe data, card validation codes
or values, and PINS or PIN block data are not stored on software vendor systems. These data sources
must be collected in limited amounts and only when necessary to resolve a problem, encrypted while
stored, and deleted immediately after use. (PA-DSS 1.1.5.c)

PCCharge Version 5.9.0
Updated 2/8/2010

 11

Purging Cardholder Out of Date Data:

 The end user merchant will not hold out of date cardholder data. The retention period will be
merchant defined.

 The PCCharge user‘s manual provides for customers, resellers and integrators guidance on data
removal and the location of the data to be deleted.

The PA-DSS Requirements Reference:
2.1.a Review the Implementation Guide prepared by the vendor and verify the documentation
includes the following guidance for customers and resellers/integrators. Cardholder data exceeding
the merchant-defined retention period must be purged. All locations where the payment application
stores cardholder data (so that merchant knows the locations of the data that needs to be deleted.

Password and Account Settings

Access Control
Merchants, resellers and integrators are advised to control access, via unique username and PCI DSS
compliant complex passwords and the granting of restricted user access rights, to any PCs, servers, and
databases with payment applications and cardholder data. All activity is logged. This covers all
transactions attempted and completed. Audit reports should be run at the end of a shift / end of day
to verify all valid and invalid user authentications

Passwords
The following guidelines should be followed:

 Customers and resellers/integrators are advised against using administrative accounts for
application logins (e.g., don‘t use the ―sa‖ account for application access to the database).
(PA-DSS 3.1c)

 Customers and resellers/integrators are advised to assign strong passwords to these default
accounts (even if they won‘t be used), and then disable or do not use the accounts. (PA-DSS
3.1)

 Customers and resellers/integrators are advised to assign strong application and system
passwords whenever possible. (PA-DSS 3.1c)

 Customers and resellers/integrators are advised how to create PCI DSS-compliant complex
passwords to access the payment application, per PCI Data Security Standard 8.5.8 through
8.5.15. (PA-DSS 3.1c)

 Customers and resellers/integrators are advised to control access, via unique username and PCI
DSS-compliant complex passwords, to any PCs, servers, and databases with payment
applications and cardholder data. (PA-DSS 3.2)

 Customers and resellers/integrators are advised that passwords are encrypted during both
transmission and storage, using strong cryptography. (PA-DSS 3.3)

 Passwords should meet the requirements set in PCI DSS section 8.5.8 through 8.5.15, as listed
here.

 Do not use group, shared, or generic accounts and passwords. The username must be unique.
Passwords are to complex (min. of 7 characters including 1 capital letter, 1 number and 1
special character)

 Change user passwords at least every 90 days

 Require a minimum password length of at least seven characters

 Use passwords containing both numeric and alphabetic characters

 Do not allow an individual to submit a new password that is the same as any of the last four
passwords he or she has used

 Limit repeated access attempts by locking out the user ID after not more than 6 attempts

 Set the lockout duration to thirty minutes or until administrator enables the user ID

 If a session has been idle for more than 15 minutes, require the user to re-enter the password
to re-activate the terminal

PCCharge Version 5.9.0
Updated 2/8/2010

 12

PA-DSS Requirements Reference:
3.1 Application must require unique usernames and complex passwords for all administrative access
and for all access to cardholder data.
3.2 Access to PCs, servers, and databases with payment applications must require a unique username
and complex password.
3.3 Application must require password files to be encrypted during transmission and storage.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Logging

Merchant Applicability
PCCharge meets all PA-DSS requirements for logging.

PCI Guidelines for Logging
Implement automated audit trails for all system components to reconstruct the following events:

 All individual accesses to cardholder data.

 All actions taken by any individual with root or administrative privileges.

 Access to all audit trails.

 Invalid logical access attempts.

 Use of identification and authentication mechanisms.

 Initialization of the audit logs.

 Creation and deletion of system-level objects.

Record at least the following audit trail entries for all system components for each event:

 User identification.

 Type of event.

 Date and time.

 Success or failure indication

 Origination of event.

 Identity or name of affected data, system component, or resource.

Configuring Log Settings
The PCCharge User‘s Manual provides guidance on Configuring the Log Settings.

PA-DSS Requirements Reference:
Testing Procedure 4.2b If application log settings are by default set to full logging. When this is
changed the customer and resellers/integrators will no longer be in compliance.

PCCharge Version 5.9.0
Updated 2/8/2010

 13

Wireless Networks

Merchant Applicability
If the merchant implements the payment application into a wireless environment, or implements
wireless networking into a payment application environment, configure the wireless environment to
adhere to PCI requirements 1.3.9, 2.1.1, and 4.1.1.

PCI Requirements:

 (PCI 1.3.8, 1.3.9) Installation and configuration of personal firewalls on employee-owned
computers with direct connectivity to the Internet which are used to access the organization's
network

 (PCI 2.1.1) Modify default wireless settings, including:

 Change wireless equivalent privacy (WEP) keys

 Change default service set identifier (SSID)

 Change default passwords

 Change SNMP community strings

 Disable SSID broadcasts

 Enable WiFi protected access (WPA and WPA2) technology for encryption and authentication
when WPA-capable.

 (PCI 4.1.1) For wireless networks transmitting cardholder data, encrypt the transmissions by
using Wi-Fi protected access (WPA or WPA2) technology, IPSEC VPN, or SSL/TLS. Never rely
exclusively on wired equivalent privacy (WEP) to protect confidentiality and access to a
wireless LAN. Secure encryption rules apply.

If WEP is used, do the following:

 Use with a minimum 104-bit encryption key and 24 bit-initialization value

 Use ONLY in conjunction with Wi-Fi protected access (WPA or WPA2) technology, VPN, or
SSL/TLS

 Rotate shared WEP keys quarterly (or automatically if the technology permits)

 Rotate shared WEP keys whenever there are changes in personnel with access to keys

 Restrict access based on media access code (MAC) address

PA-DSS Requirements Reference:
Testing Procedure 6.1.c If customer could implement the payment application into a wireless
environment, examine PA-DSS Implementation Guide prepared by vendor to verify customers and
resellers/integrators are instructed on PCI DSS-compliant wireless settings, per PCI Data Security
Standard 1.3.8, 1.3.9, 2.1.1 and 4.1.1.

Network Segmentation

Merchant Applicability
Any machines that can store credit card data should not be directly connected to the Internet. For
example, web servers and database servers should not be installed on the same server. A DMZ must be
set up to segment the network so that only machines on the DMZ are Internet accessible.

PA-DSS Requirements Reference:
Testing Procedure 9.1b If customer could store cardholder data on a server connected to the Internet,
examine DSS Implementation Guide prepared by vendor to verify customers and resellers/integrators
are told not to store cardholder data on Internet-accessible systems (e.g., web server and database
server must not be on same server.)

PCCharge Version 5.9.0
Updated 2/8/2010

 14

Secure Remote Software Updates

Merchant Applicability
VeriFone, Inc. uses remote connectivity to deliver patches to the PCCharge. Merchants should develop
an acceptable use of critical employee-facing technologies policy as per the guidelines below. If
merchant is receiving updates via modem, the modem should only be activated when downloads are
needed.

Acceptable Use Policy
The merchant should develop usage policies for all modems, wired and wireless devices, as per PCI
requirement 12.3. These usage policies should include:

 Explicit management approval for use

 Authentication for use

 A list of all devices and personnel with access

 Labeling the devices with owner

 Contact information and purpose

 Acceptable uses of the technology

 Acceptable network locations for the technologies

 A list of company approved products

 Allowing use of modems for vendors only when needed and deactivation after use

 Prohibition of storage of cardholder data onto local media when remotely connected

Personal Firewall
Any "always-on" connections from a computer to a VPN or other high-speed connection should be
secured by using a personal firewall product per PCI Data Security Standard 1.3.9.
Remote Update Procedures
PCCharge version 5.8.0 does not have remote update functionality.

PA-DSS Requirements Reference:
10.1 If software updates are delivered via remote access into customers’ systems, software vendors
must tell customers to turn on modem only when needed for downloads from vendor, and to turn off
immediately after download completes. Alternatively, if delivered via VPN or other high-speed
connection, software vendors must advise customers to properly configure a personal firewall product
to secure “always-on” connections.

PCCharge Version 5.9.0
Updated 2/8/2010

 15

Remote Access

Merchant Applicability
If Product can be accessed remotely, all network connectivity should be performed using, at minimum,
two-factor authentication that supports encrypted communications per PCI requirement 8.3. This is for
all remote access to the network by employees, administrators, and third parties. Use technologies
such as remote authentication and dial-in service (RADIUS) or terminal access controller access control
system (TACACS) with tokens; or VPN (based on SSL/TLS or IPSEC) with individual certificates.

NOTE: All servers and network devices, whether managed by employees or by third parties, must be
built and deployed in accordance with this policy. Exemptions from this policy will be permitted only if
approved in advance and in writing by the Chief Security Officer.

Remote Access Software Security Configuration

 Implement the following applicable security features for all remote access software used by
the merchant, reseller or integrator:

 Change default settings in the remote access software (for example, change default Passwords
and use unique Passwords for each customer)

 Allow connections only from specific (known) IP/MAC addresses.

 Use strong authentication or complex passwords for logins.

 Enable encrypted data transmission.

 Enable account lockout after a certain number of failed login attempts.

 Configure the system so a remote user must establish a Virtual Private Network (―VPN‖)
connection via a firewall before access is allowed.

 Enable the logging function.

 Restrict access to customer Passwords to authorized reseller/integrator personnel.

 Establish customer Passwords according to PCI DSS requirements 8.1, 8.2, 8.4, and 8.5.

PA-DSS Requirements Reference:
11.2 Remote access must be authenticated using a two-factor authentication mechanism.
11.3 If vendors, resellers/integrators, or customers can access customers’ applications remotely, the
remote access software must be implemented securely.

PCCharge Version 5.9.0
Updated 2/8/2010

 16

Encrypting Network Traffic

Transmission of Cardholder data
Any transmission of cardholder data over public networks should be encrypted. Encryption solutions
such as SSL/TLS or IPSEC should be used.

Email and Cardholder data
Product does not natively support the sending of email. As per PCI requirement 4.2, cardholder data
should never be sent unencrypted via email.

Non-Console administrative access
All non-console administrative access of the application or operating system should be encrypted. Use
technologies such as SSH, VPN or SSL/TLS where applicable.

PA-DSS Requirements Reference:
12.1 Use strong cryptography and security protocols such as secure sockets layer (SSL) / transport
layer security (TLS) and Internet protocol security (IPSEC) to safeguard sensitive cardholder data
during transmission over open, public networks.

Examples of open, public networks that are in scope of the PCI DSS:

 The Internet

 Wi-Fi (IEEE 802.11x)

 Global System for Mobile communications (GSM)

 General Packet Radio Service (GPRS).

12.2 The application must never send unencrypted PANs by e-mail.
13.1 Encrypt all non-console administrative access. Use technologies such as SSH, VPN, or SSL/TLS for
web-based management and other non-console administrative access.

Training and Communications Program

Overview
VeriFone Inc. has created a training program, per PA-DSS requirement 14.2, to train resellers and
integrators on how to implement PCCharge into a production environment in a PA-DSS compliant
manner.

Vendor Responsibility
VeriFone, Inc. will review and update the training materials annually and after new software versions
are released.

Materials
All parties interested in the reseller and integrator training program should contact VeriFone, Inc. Sales
for further information.

PA-DSS Requirements Reference:
14.2 Develop and implement training and communication programs to ensure software resellers and
integrators know how to implement the application software and related systems and networks in a
DSS-compliant manner. Update the training on an annual basis and whenever new software versions
are released.

PCCharge Version 5.9.0
Updated 2/8/2010

 17

More Information

For more information related to security, visit:
http://www.pcisecuritystandards.org
http://www.visa.com/cisp
http://www.sans.org/resources
http://www.microsoft.com/security/default.asp
https://sdp.mastercardintl.com/

WARNING: Although VeriFone, Inc. has designed PCCharge to properly secure credit card cardholder
information according to PCI guidelines; it is ultimately the merchant’s responsibility to secure the
system which hosts PCCharge and the environment which hosts the Point of Sale.

WARNING: VeriFone, Inc. takes security seriously therefore we have enhanced our integration
methods to enhance security for sensitive data. If using File Method integration to PCCharge we
strongly suggest you consider migrating towards a more secure integration method such as TCP/IP SSL
socket integration.

PA-DSS Requirements Reference:
The following DSS Requirements were referenced in this document:

DSS Requirement DSS Sub-requirement(s)
1 1.1.4, 1.1.5, 1.1.6
2 2.1
3 3.1, 3.2, 3.3
4 4.2b
6 6.1
9 9.1
10 10.1
11 11.2, 11.3
12 12.1, 12.2
13 13.1
14 14.2

PA-DSS Version Information
1.2
Last Modified Date: 11 November, 2008 Printed: 11 November, 2008

PA-DSS Document-Security Section History

Revision Author Date Description

1.0 CC. 03/14/2008
Consolidate
documents.

1.1 SP. 03/14/2008 Format revisions.

1.2 TH. 11/17/2008 PA-DSS Update.

http://www.pcisecuritystandards.org/
http://www.visa.com/cisp
http://www.sans.org/resources
http://www.microsoft.com/security/default.asp
https://sdp.mastercardintl.com/

PCCharge Version 5.9.0
Updated 2/8/2010

 18

CHAPTER 1 -- PCCharge DevKit
Introduction

PCCharge Version 5.9.0
Updated 2/8/2010

 19

Introduction

Thank you for purchasing the PCCharge DevKit or the PCCharge DevKit Suite.

VeriFone, Inc. is committed to providing integrators and merchants with the most comprehensive
electronic payment processing solutions available today. If you have any suggestions as to how we can
improve our products, support, or documents, please call us at (877) 659-8983 or e-mail us at

devsupport@verifone.com.

This chapter is an introduction to the PCCharge DevKit. It will familiarize you with the various
components and typical uses of this bundle of products.

PCCharge DevKit

The PCCharge DevKit is a bundle of applications, tools, code examples, and documents used to enable
electronic payment processing in third party applications. The PCCharge DevKit is designed to guide
developers while they are building an interface in their application to PCCharge Payment Server and/or
PCCharge Pro.

The PCCharge DevKit includes evaluation copies of PCCharge Pro and PCCharge Payment Server for use
only during integration and testing.

Please note: The evaluation copies of PCCharge may not be used to perform live payment processing.
Merchants must purchase a licensed copy of either PCCharge Payment Server or PCCharge Pro in order
to perform live payment processing. Licenses for distribution to resellers and customers are available
by contacting an authorized reseller or by calling (800) 725-9264.

PCCharge DevKit Suite

The PCCharge DevKit Suite is also a bundle of applications, tools, code examples, and documents used
to enable electronic payment processing in third party applications. In fact, the manual, media, code
examples, etc. are identical to those in the PCCharge DevKit. The only difference between the two
products is that the PCCharge DevKit Suite contains the following licenses which allow live payment
processing:

 One (1) live license for either PCCharge Payment Server or PCCharge Pro.

 One (1) Unlimited User license that can be activated within PCCharge Payment Server or
PCCharge Pro.

Note: In this manual, both the PCCharge DevKit and PCCharge DevKit Suite are commonly referred to
as the ―PCCharge DevKit‖ or ―DevKit‖.

PCCharge Version 5.9.0
Updated 2/8/2010

 20

Product Components

PCCharge DevKit

The PCCharge DevKit is this manual and a group of examples of the various interface methods available
to integrate payment processing into applications. Sample code for FoxPro, VB.Net, VB6, C++.Net,
C#.Net, Access, Java, Delphi, ASP, Java, and Cold Fusion is included to demonstrate the OCX
(ActiveX), DLL (ActiveX), OLE (COM), TCP Interface, and *File Methods of integration.

* VeriFone takes security seriously therefore we have enhanced our integration methods to
enhance security for sensitive data. If using File Method integration to PCCharge we strongly
suggest you consider migrating towards a more secure integration method such as TCP/IP SSL
socket integration.

PCCharge DevKit Development Support

The PCCharge DevKit includes 30 minutes of telephone developer support to be used within twelve
months. After that, additional hours may be purchased in order to receive additional phone support.
Telephone/e-mail developer support is provided at a charge of $75.00 per half hour billed in advance
in half hour increments.

Consultative coding support is $1500 per day at the VeriFone, Inc. offices in Savannah, Georgia or
$1500 per day plus travel and expenses at the developer‘s location.

PCCharge Pro and PCCharge Payment Server

The PCCharge DevKit includes copies of PCCharge Payment Server and PCCharge Pro. PCCharge
Payment Server and PCCharge Pro are the transaction engines that handle all payment processing
requests submitted by the third-party integrated application.

Both PCCharge Payment Server and PCCharge Pro include a GUI (Graphical User Interface) that is used
for setup. This GUI can also be used for reporting, settlement, maintenance, and transaction
processing if needed. When distributing an integrated application, either PCCharge Payment Server or
PCCharge Pro must be installed and activated on the merchant‘s computer or on a computer located in
the merchant‘s LAN in order to enable payment processing.

Note: Merchants should not attempt to process transactions or run reports directly from the PCCharge
GUI while the integrated application is processing transactions or settling batches. If the merchant
wishes to process transactions or run reports directly with PCCharge (instead of through the integrated
application), it is highly recommended that they use the PCCharge Client. The PCCharge Client is
included on the PCCharge Pro and Payment Server CD, and can be installed on the same (or on a
different) computer as PCCharge. The PCCharge Client has payment processing and reporting
capabilities.

The following outlines the features of PCCharge Pro and PCCharge Payment Server:

PCCharge Version 5.9.0
Updated 2/8/2010

 21

Payment Types Supported

Credit Cards -- PCCharge supports credit card transaction processing according to specifications of
supported payment processors for the following major credit cards: VISA, MasterCard, Discover,
American Express, Optima, Carte Blanche, Diner‘s Club, and some private label cards.

Debit Cards – PCCharge supports debit card transaction processing according to specifications of
supported payment processors for both online (ATM) and offline debit cards.

Checks – PCCharge supports verification and conversion of a variety of types of paper-based checks
including personal, government, payroll, travelers, and so forth. When performing verification
transactions, primary and secondary forms of identification are accepted for each check type according
to the specifications of the supported check processors.

EBT – PCCharge supports EBT transaction processing according to the specifications of the supported
payment processors for both food stamp and cash benefit transactions.

Gift Cards – PCCharge supports gift card processing according to the specifications of the supported
payment processors. PCCharge includes support for the following gift card programs (availability
depending on processor): loyalty transactions, points-based transactions, multiple issuance, and
standard transactions (Sale, Void, etc.).

Hardware Devices Supported

The PCCharge graphical user interface (GUI) includes support for many industry-standard hardware
devices in addition to new devices that support the OPOS standard. Some of these devices are
accessed via a standard COM port, whereas others may be connected to the keyboard (PS2) port. The
devices include, but are not limited to the following:

 Report Printers

 Receipt Printers

 Magnetic Stripe Readers

 PINpads

 Check Readers

Note: In order for an integrated application to support these types of devices, the developer must
create an interface to each hardware device that will be supported. Some devices simulate keyboard
entry (such as Magnetic Stripe Readers) and do not require any special coding to support. However,
some devices, such as PINpads, require a complete integration such as a serial port interface.
VeriFone, Inc. provides an ActiveX control and an OLE/COM class that can be used to integrate to some
PINpads. To support PINpads and other hardware that are not included in the control or the class,
check with the various hardware providers for information on hardware integration.

For a current list of the hardware devices that are supported by the PCCharge GUI, visit the VeriFone,
Inc. website at www.pccharge.com

Reporting

The following reports are available in PCCharge. All reports contain filters (such as date, card number,
member name, and so forth), allowing applications to designate the specific information to appear on
the reports. All reports can be viewed on the screen if using the PCCharge GUI. Integrated
applications can request that reports be sent to a printer or written to a file.

PCCharge Version 5.9.0
Updated 2/8/2010

 22

Transaction Summary Report – This report summarizes information for credit, debit, check, EBT, and
gift transactions that have been performed.

Detail Report – Each payment type (credit, debit, check, EBT, and gift) has a detail report available.
The reports show line item detail for each transaction.

Batch Pre-Settle Report – This report lists transactions that have been authorized but not settled.

Batch Post-Settle Report – This report lists transactions that have been settled.

Security

Transaction Database Encryption -- PCCharge automatically encrypts account numbers within the
program‘s database. Account numbers appearing will show only the first and last four digits of the
account number.

PIN Encryption -- PCCharge supports PIN data entry devices (as listed in previous sections) for use with
online debit card processing. Each PINpad supported by PCCharge supports one or more of the two
following PIN encryption standards:

1. Derived Unique Key Per Transaction (DUKPT) -- Derives a transaction key for the current or
next transaction from the previous key plus other data. The scheme generates keys based on a
finite list known only to the host and PINpad. The key sequence is unique to each PINpad,
resulting in a unique key per transaction. DUKPT is the standard in the U.S., with other DUKPT
schemes internationally.

2. Master/Session Key Management -- In this method, a key is injected into the PINpad in a

secure environment. This "master" key is not used to encrypt PINs. Instead, it is used to decrypt
a session or working key that has been encrypted by the host (using the master key) then
transmitted over the network to the PINpad. This session key is used to encrypt PINs. The
session key can be changed as frequently as every transaction. This encryption method is being
phased out in the U.S.

Database Support

PCCharge uses a Microsoft Access database to store and maintain transaction information. This open-
architecture, industry-standard database is accessible through ODBC drivers, DAO or ADO.

Utilities

PCCharge includes a number of utilities to facilitate maintenance of the system. These include the
ability to back up and restore data files, compact and repair the database, archive transaction history,
as well as a number of modem detection and configuration options.

PCCharge Version 5.9.0
Updated 2/8/2010

 23

CHAPTER 2 -- Getting Started

PCCharge Version 5.9.0
Updated 2/8/2010

 24

Getting Started

It is recommended that several tasks be performed prior to coding. The DevKit and the PCCharge
products will need to be installed, the test merchant accounts will need to be set up and tested, the
method of integration will need to be chosen, and the differences between PCCharge Payment
Server and PCCharge Pro should be reviewed.

Follow the steps below to set up PCCharge in a development environment:

1) Install the DevKit and the PCCharge Products

To install, insert the DevKit CD and follow the installation instructions. Once the DevKit installation
has concluded, the installation program will prompt to install both PCCharge Payment Server and
PCCharge Pro. It is recommended that both products be installed. The default installation options
should be chosen while installing the DevKit and the PCCharge products.

2) Install the Test Merchant Accounts

The PCCharge DevKit comes with test merchant accounts that can be used while integrating credit card
processing into third-party applications. The test merchant accounts should be utilized to avoid testing
with live merchant accounts.

Follow the procedure below to install the test merchant accounts:

1) Remove any floppy disks from drive A:

2) Start PCCharge Payment Server (use the PCCharge Payment Server shortcut in Start | Programs

| Verifone | PCCharge Payment Server). If prompted, enter serial number 1234-1234-
123456-54.

3) After a modem detection completes, the following message will appear:

―Do you have a configuration disk?‖

4) Click Yes and then OK.

5) When prompted to insert a disk in Drive A, click Cancel.

6) When the ―Copy Configuration Files From…‖ box appears, browse to the following directory:

C:\Program Files\active-charge SDK\Test Merchant Info

7) Several files ending in .pcc will appear. Click Open.

8) When prompted to overwrite files, click Yes each time.

9) PCCharge Payment Server will now shut down. Upon restart it will ask for a configuration disk

again. This time click No.

10) When prompted to ―Enter Serial Number‖, enter the serial number that was provided with the
DevKit and click OK. Enter serial number 1234-1234-123456-54.

PCCharge Version 5.9.0
Updated 2/8/2010

 25

11) Click OK to each box that appears.

PCCharge Payment Server is now set up for testing. Please repeat this process to setup PCCharge Pro.

PCCharge Version 5.9.0
Updated 2/8/2010

 26

Installing the Test Merchant Accounts Manually

The following is an alternative method for installing the test merchant accounts.

The test merchant accounts are included in text-based configuration files (*.pcc) that are located in

the directory C:\Program Files\active-charge SDK\Test Merchant Info. To install the
test merchant accounts manually, close PCCharge and then copy these files directly into the
directories where PCCharge Payment Server and PCCharge Pro reside:

 C:\Program Files\Active-Charge (for PCCharge Payment Server)

 C:\Program Files\PCCW (for PCCharge Pro)

When prompted to overwrite files, choose Yes.

Note: Installing the test merchant accounts will overwrite any existing merchant configuration that
was previously set up in PCCharge. A backup of the PCCharge directory is recommended if PCCharge
was previously set up on the computer.

3) Verify that PCCharge is Set Up Properly

Prior to integrating, it is important to make sure that the test merchant accounts have been set up
properly in PCCharge Payment Server and PCCharge Pro. This should be done by running test credit
card transactions directly from the GUI of each program.

Follow the procedure below to run credit card transactions in either PCCharge Payment Server or
PCCharge Pro:

1) Start PCCharge Payment Server or PCCharge Pro.

Note: After the initial setup of PCCharge Payment Server, its GUI is hidden by default each
time the program starts. Double-click the ―dollar sign‖ icon in the system tray to open the
GUI.

WARNING: As of PCCharge version 5.8.0, you will be required to create a System password at program
launch. You will also be required to set up a cashier named Manager. Manager can perform any
functions involving transactions, including setting up merchant accounts and devices, processing
transactions, settling batches, and running reports within the user interface, this will not affect any
existing integration; you do not have to send any cashiers when using an integrated application.
Manager cannot access the cashier setup, perform the new key generation function or access the Data
Manager.

WARNING: PCCharge requires ‗strong‘ passwords, and password variety is enforced. Passwords must be
changed every 90 days. Reminder prompts will start when there are 14 days or less. A Password cannot
be used if it has been one of the last four used. See next warning box for the PCCharge password
requirements.

WARNING: If the System user attempts to login 5 times incorrectly, PCCharge will shutdown and
remain locked for 30 minutes. The System user will be prompted with an option to call Tech Support
for a password reset.

WARNING:
PCCharge requirements for ‗strong‘ password:

PCCharge Version 5.9.0
Updated 2/8/2010

 27

 Must be minimum 7 alpha/numeric characters in length.

 Must be case sensitive

 Must contain at least one upper case character

 Must contain at least one numeric character

 Must contain at least one special character (e.g., @, $, %, etc.)
If a password becomes ‗corrupt‘ as if someone has tried to tamper with the system, PCCharge will lock
itself, and it may be necessary to call Dev Support.

If you did not setup a password previously, Click Log On

PCCharge Version 5.9.0
Updated 2/8/2010

 28

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

2) From PCCharge, select one of the processors from the drop-down list at the bottom of
PCCharge.

Note: All processors in this list support dial-up processing, and many of them support direct
TCP/IP processing. If testing of dial-up processing is required, refer to the PCCharge Payment
Server or PCCharge Pro manual for information on setting up a modem with PCCharge. Refer
to the web-based certification list to determine which processors support dial-up and TCP/IP
processing: http://www.pccharge.com/products/pccharge_certs.htm

Note: Not all processors allow test merchant accounts to be distributed in the PCCharge
DevKit. This drop-down list represents only a subset of the processors that PCCharge supports.

Note: The sample Chase Paymentech merchant account included with the DevKit will not allow
TCP/IP testing as-is. The password must be updated in the Chase Paymentech Advanded
Options screen in PCCharge prior to using the NetConnect functionality. See the Chase
Paymentech entry in the Test Merchant Account Information section (see page 539) for more
information.

3) Click the Visa / MasterCard icon.

4) Key in a transaction using one of the test credit card numbers that appear in the Test Credit
Cards and Merchant Accounts section of the Appendix (see page 537).

5) Use 12XX as the expiration date (where XX is the last two digits of the current year: e.g.,

1208).

6) Use the amount of $1.00 (many processors will decline test transactions if the amount is

different than $1.00).

7) Click Process. If prompted for additional information, click No to each prompt.

8) A result of ―CAPTURED‖ and an auth code will be returned if PCCharge is set up properly.

(Note: A ―NOT CAPTURED‖ may also be returned with some sort of a declined response. This

is also a valid response from the processor and means PCCharge is set up properly.)

Note: Not every card works with every test merchant number. If errors or decline messages
are returned by PCCharge, attempt running transactions using different credit card numbers.

PCCharge Version 5.9.0
Updated 2/8/2010

 29

4) Determine Which Integration Method Will Be Used

There are six PCCharge integration methods available. This section will help the developer determine
which method(s) should be used. The five integration methods are:

1) OCX (ActiveX)
2) DLL (ActiveX)
3) OLE/COM
4) File Method
5) TCP Interface

6) PAYware SIM
*

Note: Integration methods 1-3 (OCX, DLL, and OLE/COM) each create a text file that is sent to and
processed by PCCharge. Thus, all three of these integration methods are essentially sending
transaction information to PCCharge via the File Method. These three integration methods provide
various classes, which include properties and methods to simplify integration. The properties and
methods are very similar between the three integration methods, making it relatively easy to migrate
from one to the other if needed.

Note:
*
 Information regarding PAYware SIM can be found in the ―SIM (Secure Integration Method)‖

folder in your Active-Charge SDK folder. This is typically found in “C:\Program Files\Active-Charge
SDK\SIM (Secure Integration Method)”.

PCCharge Version 5.9.0
Updated 2/8/2010

 30

OCX Method

The OCX Method should be considered if programming will occur in a visual environment that supports
ActiveX technology and all client machines that will process transactions are Windows-based.

The OCX controls are visual wrappers around code to create a flat text input file containing transaction
data. Also, the OCX controls handle all of the file I/O (Input / Output) and automatically parse the
output file that is created and returned by PCCharge. All of these operations are done by setting
properties, calling methods, and monitoring events fired by the OCX controls. The use of events allows
for asynchronous communication to PCCharge.

A choice of two different communication methods is provided with the OCX: file transfer or TCP/IP.
If file transfer is selected, the OCX will build a file to be sent to the specified path. If TCP/IP is
selected, the OCX will build a string, and send that string through sockets to the IP address specified.
To make use of the TCP/IP functionality a dependency file called the DartSecure2.dll will need to be
distributed with the OCX file and registered on the client machine. This file is installed with PCCharge
Pro or Payment Server and can be found in the System32 folder of any machine that has PCCharge
installed on it.

When using TCP/IP, it is imparitive that the port be opened in PCCharge. To do this, open the
PCCharge interface and select Setup > Configure System. Click advanced and select ―Use TCP/IP
Connection‖. This is the port number setting that will be used in the OCX.

Future Versions of PCCharge will have the ability to accept TCP/IP transaction via SSL. This
functionality is written into the OCX. For now, this functionality must be turned off. Please consult
the OCX documentation for instruction on how to turn this functionality off.

Note: For the File Transfer method, in a client/server environment, the directory in which PCCharge
resides must be shared so that the clients that are generating transactions have read, write, and
execute permissions.

DLL Method

If programming will occur in a Windows programming environment that does not support the ActiveX

OCX technology, then consider using the DLL Method (PSCharge.dll).

PSCharge.dll is a wrapper around code to create a flat text input file containing transaction data.

Also, PSCharge.dll handles all of the file I/O (Input / Output) and automatically parses the output

file that is created and returned by PCCharge. All of these operations are done by setting properties

and calling methods that are provided by PSCharge.dll. PSCharge.dll performs processing in a

synchronous manner.

A choice of two different communication methods is provided with the DLL: file transfer or TCP/IP. If
file transfer is selected, the DLL will build a file to be sent to the specified path. If TCP/IP is selected,
the DLL will build a string, and send that string through sockets to the IP address specified. To make
use of the TCP/IP functionality a dependency file called the DartSecure2.dll will need to be distributed
with the DLL file and registered on the client machine. This file is installed with PCCharge Pro or
Payment Server and can be found in the System32 folder of any machine that has PCCharge installed on
it.

When using TCP/IP, it is imparitive that the port be opened in PCCharge. To do this, open the
PCCharge interface and select Setup > Configure System. Click advanced and select ―Use TCP/IP
Connection‖. This is the port number setting that will be used in the DLL.

PCCharge Version 5.9.0
Updated 2/8/2010

 31

Future Versions of PCCharge will have the ability to accept TCP/IP transaction via SSL. This
functionality is written into the DLL. For now, this functionality must be turned off. Please consult
the DLL documentation for instruction on how to turn this functionality off.

Note: For the File Transfer method, in a client/server environment, the directory in which PCCharge
resides must be shared so that the clients that are generating transactions have read, write, and
execute permissions.

Note: If the application will be web-based (e.g., a shopping cart, eCommerce-enabled website, etc.),
and will be hosted on a Windows-based web server, consider using the DLL Method. Web-based
languages such as ASP and Cold Fusion support referencing DLLs.

PCCharge Version 5.9.0
Updated 2/8/2010

 32

OLE/COM Method

If programming will occur in a Windows programming environment that allows directly referencing the
exposed classes of an executable, then consider the OLE/COM method of integration.

The OLE/COM Method makes it possible to completely hide the PCCharge interface from the user. All
aspects from setup and configuration to processing transactions can be done programmatically. It is
possible to make calls to set properties or show PCCharge forms by accessing the classes exposed
through OLE/COM. All processing is done by setting properties, calling methods, and monitoring events.
The use of events allows for asynchronous communication to PCCharge. The OLE/COM method also
supports synchronous communication to PCCharge.

Note: In order to use the OLE/COM Method, PCCharge must reside on the same computer as the
integrated application. The OLE/COM Method will not typically work in a client/server environment
(i.e., multi-user or multi-station).

Note: When new versions of PCCharge are released (and the OLE/COM Method is used to integrate with
PCCharge), the integrated application must be re-compiled for it to support these new versions. This
is a limitation of OLE/COM, not of the PCCharge products.

File Method

The File Method is typically used by integrators who prefer to handle the creating, reading, and parsing
of flat text files themselves. All of the required file I/O and polling must also be handled by the
integrator. The widest variety of programming languages support the File Method. Integration via the
File Method is required if programming will occur in an environment that does not support ActiveX,
OLE/COM, or socket communications. When integrating via the File Method, the message format used
to communicate with PCCharge is XML.

The primary benefits to using the File Method are:

 It is operating system independent.

 It can be used in any programming language that supports file I/O.

In addition, the PCCharge File Method is very similar to the File Method for RiTA Server. RiTA Server,
also designed by VeriFone, Inc., is an enterprise level payment processing product. If the integrator
feels that an integration to the RiTA Server product might occur in the future, migration to the RiTA
product is easier if the File Method is used when integrating with PCCharge.

Note: Although the File Method is operating system independent, PCCharge must be running on a
Windows machine somewhere on the network—only the client machines may run on other operating
systems.

Note: In a client/server environment, the directory in which PCCharge resides must be shared so that
the clients that are generating transactions have read, write, and execute permissions.

Note: If the application will be web-based (e.g., a shopping cart, eCommerce-enabled website, etc.),
the File Method may be used. Many Web based languages support file I/O.

PCCharge Version 5.9.0
Updated 2/8/2010

 33

TCP Interface

Any integrator using a programming language that supports the use of TCP/IP communication should
consider utilizing the TCP Interface method.

The primary advantage of using the TCP Interface method is that it is not file-based. This provides
several benefits to the integrator:

 When PCCharge is used in a client/server environment, the TCP Interface does not require that
the PCCharge directory be shared on the network. All other integration methods require that
the PCCharge directory be shared on the network in a client/server environment.

 The TCP Interface utilizes the operating system‘s TCP/IP stack and does not require any
additional controls or additional object overhead to perform payment processing.

 The TCP Interface is operating system independent.

In addition, the PCCharge TCP Interface method is very similar to the TCP Interface method for RiTA
Server. RiTA Server, also designed by VeriFone, Inc., is an enterprise level payment processing
product. If the integrator feels that an integration to the RiTA Server product might occur in the
future, migration to the RiTA product is easier if the TCP Interface is used when integrating with
PCCharge.

Note: Although the TCP Interface method is operating system independent, PCCharge must be running
on a Windows machine somewhere on the network—only the client machines may run on other
operating systems. In a client/server environment, the client machines must have TCP connectivity to
the Windows-based computer on which PCCharge resides.

Note: If the application will be web-based (e.g., a shopping cart, eCommerce-enabled website, etc.),
consider using the TCP Interface. Web based languages usually support socket communication.

When integrating via the TCP Method, the message format used to communicate with PCCharge is XML.

PCCharge Version 5.9.0
Updated 2/8/2010

 34

Charts of Integration Methods

The following chart summarizes several of the characteristics of each integration method.
Characteristics that are bold-faced are considered benefits of the integration method.

Integration

Method

Platforms

supported

Supports
client/server

communication

Supports
Web-based

integration

Requires
PCCharge

directory to be

shared for

client/server
communication

Requires bundling

controls with the

integrated

application

Properties and

methods provided

/ results parsed

automatically

OCX Windows YES no yes yes YES

DLL Windows YES YES yes yes YES

OLE/COM Windows no no n/a yes YES

File Method All YES YES yes NO no

TCP Interface All YES YES NO NO no

PCCharge Version 5.9.0
Updated 2/8/2010

 35

The following chart lists the various Payment Types and functions that can be integrated along with the
integration methods that support them.

Payment Types / Functions Integration Method

Credit Card Transactions

OCX (Charge.OCX)

DLL (PSCharge.dll Charge Class)

OLE/COM (PccCharge Class)
File Interface

TCP Interface

Debit Card Transactions

OCX (Debit.OCX & Device.OCX)

DLL (PSCharge.dll Debit Class)

OLE/COM (PCCDebit & PccPinPad Classes)

File Interface
TCP Interface

Check Transactions

OCX (Check.OCX)

DLL (PSCharge.dll Check Class)

OLE/COM (PccCheck Class)
File Interface

TCP Interface

EBT Card Transactions

OCX (Debit.OCX & Device.OCX)

DLL (PSCharge.dll Debit Class)

OLE/COM (PCCEBT & PccPinPad Classes)

File Interface
TCP Interface

Gift Card Transactions

OCX (GiftCard.OCX)

DLL (PSCharge.dll Gift Class)

OLE/COM (PCCGiftCard Class)
File Interface

TCP Interface

Batch Settle/Close

OCX (Batch.OCX)

DLL (PSCharge.dll Batch Class)

OLE/COM (PccBatch & PccSettle Classes)

File Interface
TCP Interface

Reporting

OCX (Charge.OCX)

DLL (PSCharge.dll Charge Class)

OLE/COM (PccCharge Class)
File Interface

TCP Interface

Configuration OLE/COM (Various Classes)

Utilities (Transaction Inquiry, etc.)

OCX (Charge.OCX)

DLL (PSCharge.dll Charge Class)

OLE/COM (PCCDebit Class)
File Interface

TCP Interface

PCCharge Version 5.9.0
Updated 2/8/2010

 36

5) Determine Which PCCharge Product(s) Will Be Supported

The DevKit includes copies of both PCCharge Payment Server and PCCharge Pro. Both products are
provided so that the integrator can ―kick the tires‖ on each product while integrating and testing. This
section is designed to assist integrators in deciding which PCCharge product(s) to support in their
applications.

Common Questions

“What is the difference between PCCharge Payment Server and PCCharge Pro?”

“Which product should I integrate with?”

“What are the advantages of PCCharge Payment Server over PCCharge Pro and vice versa?”

These are common questions that are often asked by integrators and merchants. Unfortunately, there
is not one correct answer to each of these questions. However, it is important for integrators and
merchants to know the differences between the two products so that they can determine which one (or
both) will meet their needs.

Differences and Similarities

The following are the differences between PCCharge Payment Server and PCCharge Pro:

Directory / Executable

 PCCharge Pro is installed in the c:\Program Files\PCCW directory by default. PCCharge

Pro‘s executable is named Pccw.exe.

 PCCharge Payment Server is installed in the c:\Program Files\Active-Charge directory

by default. PCCharge Payment Server‘s executable is named Active-Charge.exe.

GUI (Graphical User Interface)

 PCCharge Pro has a full-featured GUI that loads automatically.

 PCCharge Payment Server has a hidden GUI. The GUI can be accessed manually by the user by
double-clicking a ―dollar sign‖ icon in the system tray.

Error Message Suppression

 PCCharge Pro does not support Error Message Suppression. If the PCCharge Pro GUI pops up an
error message, processing will halt until the error message is cleared manually by an end-user.

 PCCharge Payment Server supports Error Message Suppression. If the PCCharge Payment Server
GUI is hidden (the default setting), any error messages generated by PCCharge Payment Server
will automatically be logged to an error file, thus allowing payment processing to proceed
normally.

Customer Database and Recurring Billing

 PCCharge Pro has a Customer Database and Recurring Billing feature available via the GUI.
Note: These features cannot be integrated.

 PCCharge Payment Server does not support the Customer Database or Recurring Billing.

PCCharge Version 5.9.0
Updated 2/8/2010

 37

Reporting (in the GUI)

 Both PCCharge Pro and PCCharge Payment Server have reporting capabilities available via the
GUI. However, PCCharge Pro has more reports than PCCharge Payment Server. PCCharge
Payment Server has fewer reports, mainly because all reports related to the Customer
Database and Recurring Billing have been omitted.

Batch Management

 Both PCCharge Pro and PCCharge Payment Server support Batch Management features. These
features cannot be integrated.

o With PCCharge Payment Server or PCCharge Pro, these features can be accessed from
the GUI via the ―Batch‖ menu or via a separate program that is included on the
PCCharge Payment Server or PCCharge Pro installation CD.

Note: For more information on the Customer Database, Recurring Billing, Reporting (in the GUI), and
Batch Management please refer to the PCCharge Pro or PCCharge Payment Server manuals.

The following are the similarities of PCCharge Payment Server and PCCharge Pro:

Transaction Processing Engine

 Identical in both PCCharge Payment Server and PCCharge Pro

API (Application Programming Interface)

 Identical in both PCCharge Payment Server and PCCharge Pro

Processor Certifications

 Identical in both PCCharge Payment Server and PCCharge Pro

Database (Microsoft Access database)

 Identical in both PCCharge Payment Server and PCCharge Pro

Multi-User and Multi-Merchant Number Support

 Identical in both PCCharge Payment Server and PCCharge Pro

PCCharge Version 5.9.0
Updated 2/8/2010

 38

Illustration of Basic Differences and Similarities

The following graphic shows the basic differences and similarities of PCCharge Payment Server and
PCCharge Pro:

Description of the diagram from the bottom up:

P1, P2, P3, Pn and API:

These sections represent the processor interfaces (aka Processor Certifications) that VeriFone,
Inc. has coded into the PCCharge products. The processors provide VeriFone, Inc. with an API
to code to in order for PCCharge to communicate with the processor‘s network. Notice that
there is only one set of processor interfaces. The processor interfaces are identical for both
PCCharge Payment Server and PCCharge Pro. Note: When a processor interface is added and
certified or updated by VeriFone, Inc., it is added or updated in all of the PCCharge products.

Transaction Processing Engine and API:

These sections represent the main PCCharge product and interface. This includes the
PCCharge API, database, utilities, etc. Note: The API is identical for both PCCharge Payment
Server and PCCharge Pro.

Graphical User Interface:

PCCharge Pro includes a full-featured GUI. This GUI appears when PCCharge Pro is started on a
computer. When a user does transaction processing via the PCCharge Pro GUI, the GUI actually
communicates to the Transaction Processing Engine via the API using the File Method of
integration. In essence, the PCCharge Pro GUI is an integration to the Transaction Processing
Engine.

Hidden GUI:

PCCharge Payment Server also includes a GUI. However, this GUI is not loaded by default and
does not appear when PCCharge Payment Server is started on a computer. After PCCharge
Payment Server has loaded, the user has the option of loading and viewing the GUI if they wish.
Like PCCharge Pro‘s GUI, the PCCharge Payment Server GUI also communicates to the
Transaction Processing Engine via the API using the File Method of integration.

PCCharge Version 5.9.0
Updated 2/8/2010

 39

The Choice

Now that the differences and similarities have been outlined, merchants and integrators should now
consider which product(s) will be used and supported.

PCCharge Payment Server

The following features of PCCharge Payment Server make it an appealing choice for most integrators:

 Hidden GUI

 Error Message Suppression

The Hidden GUI allows the integrator to hide the PCCharge Payment Server interface from the
merchant completely—making it appear as if all transaction processing is occurring solely in the third-
party integration. This is desirable to many integrators.

Also, Error Message Suppression is ideal if PCCharge Payment Server is running in an unattended
environment (i.e., running in a data center, running in an office behind locked doors, or processing
payments on a 24/7 eCommerce website, etc.). If an error message was to pop up in this type of
environment, and no operator was immediately available to clear the message, payment processing
would halt if Error Message Suppression was not available.

Because of the above features, most integrators choose to integrate and support PCCharge Payment
Server.

PCCharge Pro

Many integrators and merchants have found that they require some (or all) of the following features of
PCCharge Pro that are not available in PCCharge Payment Server:

 Customer Database and Recurring Billing (only available via the GUI)

If these features are required, it may be necessary to integrate to and support PCCharge Pro. Keep in
mind, though, that PCCharge Pro does not support the Hidden GUI and Error Message Suppression
features of PCCharge Payment Server.

Both

Based on past experience and customer feedback, VeriFone, Inc. has found that most integrators
decide to support both products, and then allow their merchants to decide which product works best
based on their needs. Because of this, both PCCharge Pro and PCCharge Payment Server are included
with the DevKit.

It is suggested that developers integrate to and support both products. Because the APIs are identical,
an integration to PCCharge Payment Server will also work with PCCharge Pro and vice versa. If using
the TCP Interface method, there are no differences in the integration whatsoever. With the other
integration methods, the main difference between integrating with PCCharge Pro and PCCharge
Payment Server is the target directory. An integration that supports both products would provide a
user-selectable option to select the target directory for PCCharge rather than hard-coding the target
directory.

PCCharge Version 5.9.0
Updated 2/8/2010

 40

6) Review Payment Processing Basics and Integration
Information and Settings

The next chapter, CHAPTER 3 -- Payment Processing Basics, includes information about the basics of
processing payments and a description of each payment type supported by PCCharge. This chapter
should be reviewed by integrators before any coding begins. The integration of PCCharge will go much
smoother if the integrator has an understanding of how transaction processing occurs on a day-to-day
basis.

It is also recommended that integrators review the information contained in CHAPTER 4 -- Integration
Information and Settings (see page 54). This chapter includes warnings, integration tips, and
guidelines that should be followed while integrating, and includes important information about Users,
Merchant Accounts, Timeouts, Follow On transactions, etc.

After PCCharge has been set up and these chapters have been reviewed, the integration may begin.
Refer to the DevKit Constants section (see page 141) and CHAPTER 6 -- PCCharge Integration
Methods (see page 155) for information on integrating payment processing using PCCharge.

PCCharge Version 5.9.0
Updated 2/8/2010

 41

CHAPTER 3 -- Payment Processing Basics

PCCharge Version 5.9.0
Updated 2/8/2010

 42

Credit Card Processing

This section provides a general overview of credit card processing and how processing differs between
Host based and Terminal based Processors.

Host based and Terminal based Processors

The most important concept for integrators to understand is what Host based and Terminal based
processors are and what the differences are between them. Depending on which type of processor will
be used by the merchant, certain tasks must be performed by the merchant either directly from the
PCCharge GUI or from the integrated application to enable them to receive funds from their credit card
transactions.

Processing credit card transactions is a two-step process. When a credit card sale transaction is
performed by the merchant, the customer‘s ―limit to buy‖ on their credit card account is reduced and
the transaction is placed in a batch. A batch is defined as a collection of transactions that are
approved but have not yet been submitted for end of day settlement. Before funds can be deposited
into the merchant‘s bank account, a second step, re-transmission, must occur.

When using PCCharge, the re-transmission process is called Batch Settlement or Batch Close. Terminal
based processors have batches that are settled, and Host based processors have batches that are
closed. Regardless, all credit card transactions in a batch have to be re-submitted to the processing
company. With certain processing companies, this step takes place automatically. With others, the
process must be performed manually.

So, in this context, there are two types of processing companies:

1) Terminal based – If the merchant is using a Terminal based processor, PCCharge stores the
batch of transactions in a file in the PCCharge directory. This file is commonly known as a
Settlement File. With Terminal based processors, batch settlement must be done
manually, usually at the end of each business day. This procedure can be performed, by
the merchant, from the PCCharge GUI. This procedure can also be accessed
programmatically by the integrator.

2) Host based - With a Host based system, the batch is stored on the credit card processor's

computer system. With a Host based system, merchants can be set up in one of two ways:

a. Auto (Time Initiated) Close – At a certain time during the day, the Host based
system will scan its computer system. If a merchant has an open batch of
transactions, the system will automatically close the batch. Usually, the merchant
can specify the time when the batch will be closed each day. If a merchant is set
up for Auto Close with their Host based processor, there are no steps needed to
initiate the batch close process.

b. Manual Close – Credit card transactions will sit in an open batch indefinitely. The
merchant is responsible for indicating to the Host based processor that the batch
should be closed. This step can be performed by the merchant from the PCCharge
GUI. This procedure can also be accessed programmatically by the integrator.

WARNING: Without settling or closing the batch, the merchant will not
receive any funds from credit card transactions!

PCCharge Version 5.9.0
Updated 2/8/2010

 43

Credit Card Transactions

There are several types of credit card transactions. The different types of transactions are referred to
as actions in PCCharge. The following is a list of the various actions with general descriptions.

Sale - This action reduces the cardholder's limit to buy, and places the transaction in the open
batch. This action is commonly used in retail and restaurant environments.

Void Sale - This action removes a sale transaction from the open batch. No funds will be
deposited into the merchant‘s bank account at settlement/close. The Void Sale action is
typically used for same day returns or to correct cashier mistakes. This action can only be
performed before the batch is settled/closed (this usually means the action has to be
performed on the same day as the sale).

Credit - This action is used to refund money to the cardholder. This action is typically used
after the batch that contains the Sale (or Post-Authorization) transaction has been settled or
closed. This action will increase the cardholder's limit to buy once the batch containing the
credit has been settled.

Void Credit - This action removes a credit transaction from the batch. This action can only be
performed before the batch is settled/closed (this usually means the action has to be
performed on the same day as the credit). This transaction is not available with all processing
companies. If the Void Credit action is not available, use the Void Sale action.

Pre-Authorization - This action only reduces the cardholder‘s limit to buy. It does not place a
transaction in the open batch. A Pre-Authorization can be considered the first half of a sale. A
Pre-Authorization reduces the limit to buy for only a predetermined amount of time, usually 7-
10 days. The credit card‘s issuing bank determines the amount of time. To place the
transaction in the open batch, a follow-on transaction (called a Post-Authorization) must occur.
This action is commonly used in MOTO (Mail Order / Telephone Order) and eCommerce
environments.

Voice-Authorization – A Voice-Authorization is similar to a Pre-Authorization, except that it is
not a PCCharge action. A Voice-Authorization is a way for a merchant to receive an approval
and an authorization code from their processing company via a telephone operator or an
automated system. This type of authorization is necessary if the processing company‘s Internet
interface or modems are down, or if the merchant has experienced a power failure, computer
crash, or other issue that does not allow them to process electronically. A Voice-Authorization
may also need to occur if a credit card transaction is flagged as fraudulent by the credit card
issuer. In order to place a Voice-Authorization in the open batch, a follow-on transaction,
called a Post-Authorization, must occur.

Post-Authorization - This action places an approved Pre-Authorization transaction into the
open batch. This action can be considered the second half of a sale. This follow-on transaction
must occur before a Pre-Authorization can be settled/closed. This Post-Authorization may also
be used to place an approved Voice-Authorization in the batch.

Void Post-Authorization - This action removes a Post-Authorization transaction from the open
batch. This action can only be performed before the batch is settled/closed (this usually
means the action has to be performed on the same day as the Post-Authorization). This
transaction is not available with all processing companies. If Void Post-Authorization is not
available, use the Void Sale action.

Commercial Card Sale - This action reduces the cardholder's limit to buy, and places the
transaction in the open batch. This action is similar to a standard credit card sale, but is

PCCharge Version 5.9.0
Updated 2/8/2010

 44

typically used if the card tendered is a procurement, purchasing, business, government, or
commercial card. Two additional values, the Tax amount and customer code, must be passed
with this type of card in order for the merchant to qualify for the lowest transaction rate.
Note: Global East (NDC), terminal based, requires the customer code be all upper case.

Commercial Card Credit - This action is typically used after the batch that contains the
Procurement Card Sale (or Procurement Card Post-Authorization) transaction has been settled
or closed. This action is similar to a standard credit card credit, but is typically used if the
card tendered is a procurement, purchasing, business, government, or commercial card. This
action will increase the cardholder's limit to buy once the batch containing the credit has been
settled. Two additional values, the Tax amount and customer code, must be passed with this
type of card in order for the merchant to qualify for the lowest transaction rate. Note: Global
East (NDC), terminal based, requires the customer code be all upper case.

Commercial Card Post-Authorization - This action places an approved Pre-Authorization
transaction into the open batch. This action is similar to a standard credit card Post-
Authorization, but is typically used if the card tendered is a procurement, purchasing, business,
government, or commercial card. This action can be considered the second half of a sale. This
follow-on transaction must occur before a Pre-Authorization can be settled/closed. This Post-
Authorization may also be used to place an approved Voice-Authorization in the batch. Two
additional values, the Tax amount and customer code, must be passed with this type of card in
order for the merchant to qualify for the lowest transaction rate. Note: Global East (NDC),
terminal based, requires the customer code be all upper case.

Sale with Gratuity – Used only in a restaurant environment, this action allows a server to
authorize the amount of the meal plus the gratuity and place the entire amount in the batch.
When settled, the amount plus the gratuity is deducted from the cardholder‘s account.

Gratuity – Used only in a restaurant environment, this action adds or adjusts the gratuity
amount on an existing Sale transaction. This action must be performed prior to batch
settlement/close.

Note: There is no action to void a Pre-Authorization. This is because Pre-Authorization cannot be
voided.

A Normal Credit Card Processing Day

This section discusses a normal day of processing credit card transactions. This section assumes that
merchants will have access to the reports provided in the PCCharge GUI and that these reports can be
compared to reports available in the integrated application.

Processing credit card transactions consists of six steps:

1) By performing the first credit card transaction of the day, the batch is opened.
2) Run transactions throughout the day.
3) After processing has been completed for the day, it is time to prepare for settlement:

a. Look at the PCCharge Daily Transaction Summary Report for the day.
b. Compare the PCCharge Daily Transaction Summary Report with summary data provided

by the integrated application.
c. Does the report look correct and do the totals match up with the integrated

application‘s totals?

PCCharge Version 5.9.0
Updated 2/8/2010

 45

4) If the reports indicate discrepancies, use the PCCharge Credit Card Detail and Batch Pre-Settle
Reports (if the processor is Terminal based) to investigate and resolve any discrepancies.

5) If the processor is Host based, settlement will occur automatically.
6) If the processor is Terminal based, settlement must be done manually. Start the settlement

process now.

Repeat these six steps each day of processing credit card transactions.

Credit Card Transaction Rates

It is important for integrators to understand credit card transaction rates. The card associations (Visa,
MasterCard, etc.) require certain data to be submitted with each transaction in order for the merchant
to qualify for the lowest transaction fees. While integrating, it is important that the application be
designed to allow merchant to pass any and all ―rate-qualifying‖ data while performing transactions.
Below is a general list of information that should be submitted in order for the merchant to receive the
best rates:

Best Rates -- Card Swiped

Fair Rates -- Card Not Present & Ticket Number & Street Address & Zip Code

Worst Rates -- Card Not Present & No Address Information

Transaction rates are based on risk. They vary based on the size of the merchant organization and that
merchant‘s ratings, markets, and how transactions occur. For instance, a very large traditional walk-in,
multi-store retail organization with check out lanes will have the lowest rates. A new mail order or
eCommerce merchant, with no retail facilities and no face-to-face or "card present" transactions, will
typically have to pay the highest transaction rates.

Based on some of these variables, each transaction can have qualifiers for higher or lower rates. A
properly written integrated application can help MOTO or eCommerce merchants get better rates (and
reduce fraud) by using the Address Verification Service (AVS). AVS captures ZIP codes and addresses of
the cardholder‘s billing address. AVS information is then compared to the cardholder‘s ZIP code and
address that the card issuer has on file. Address and ZIP code mismatches help the merchant to decide
whether or not they wish to go through with the transaction, thus helping to reduce fraud.

Commercial Cards Note

If a merchant will accept procurement, purchasing, business, government, or commercial cards, the
integrated application must be written to allow merchants to pass the tax amount and customer code
for these types of cards. This information helps the cardholder by allowing them to receive this detail
on their monthly statements and also benefits the merchant by allowing them to qualify for the lowest
rates when accepting these types of cards. Commercial card transactions that do not include this
additional information will be downgraded. Note: Global East (NDC), terminal based, requires the
customer code be all upper case.

PCCharge Version 5.9.0
Updated 2/8/2010

 46

Debit Card Processing

Debit cards were designed to be used more like a check than a credit card. Unlike credit cards with a
line of credit, the debit card causes the amount of the purchase to be deducted from the debit
cardholder‗s checking account. Like ATM cards, debit cards can be used to withdraw money from a
bank account, debiting the account immediately. However, unlike debit cards, ATM-only cards cannot
be used as cards for purchases.

Some debit cards, called ―check cards‖, can be used as debit, ATM, and credit cards. If used as a debit
or ATM with the PIN, transactions are considered to be online and debited immediately from the
cardholder‘s account. Debit check cards used as credit cards are considered offline transactions and
must go through the credit settlement process; thus, taking several days to reach the bank and be
debited from the cardholder‘s account.

Although merchants accept either credit cards or debit check cards, most merchants are unaware of
the distinction by just looking at the card. However, credit cards normally have a percentage of the
transaction as the fee while debit transactions are normally a smaller set fee.

There are three important points to know about processing debit transactions:

1) There are two types of debit card transactions:

a. Online - Online debit refers to debit card processing that requires a debit card to be
swiped and a PIN to be entered when processing a transaction.

b. Offline - Offline debit refers to debit card processing that allows a debit card to be
swiped or keyed in and PIN entry does not occur. Essentially, these card are processed
as normal credit cards. A debit card supports offline debit if it has a VISA or
MasterCard logo on the front of it. Cards that support offline debit are commonly
referred to as ―check cards‖. Refer to the previous section for general information on
processing credit cards.

2) Online Debit Transactions may only be performed in a Retail or "face to face" environment. Mail

Order/Telephone Order, and eCommerce businesses cannot perform online debit transactions.
3) Online debit transactions require that the card be swiped and that the customer enters their

PIN on a PINpad. Each cash register or computer that will support Online debit transactions
must have a card swipe device and PINpad connected to it.

As with credit card processing, debit processing is a two-step process. Debit processing requires re-
transmission of information, referred to as Closing. Typically, Debit processors are Host based. That
means the information to be re-transmitted is stored on the host computer systems or the processor's
computer system. Merchants can be set up one of two ways:

Time Initiated Close – At a certain time during the day (usually specified by the merchant), a
Host based system will scan its database. If a merchant has an open batch (transactions that
have not been deposited), the host system will automatically close the batch.
Manual Close – Authorized transactions will sit in an open batch indefinitely. The merchant is
responsible for indicating to the host processor that the batch should be closed.

If the merchant is set up for Manual Close, they will need to perform a Close to complete their debit
transactions.

If the merchant is processing credit card transactions as well as debit transactions, the debit
transactions will be closed at the time that the credit card transactions are settled.

PCCharge Version 5.9.0
Updated 2/8/2010

 47

Debit Card Transactions

There are several types of debit card transactions. The different types of transactions are referred to
as actions in PCCharge. The following is a list of the actions with general descriptions.

Sale - This action deducts funds from the cardholder's bank account.

Return - This action deposits funds into the cardholder's bank account.

Void – This action voids a Sale or Return.
Note: Not all debit card processors in PCCharge support Debit Void functionality

A Normal Debit Card Processing Day

This section discusses a normal day of processing Debit transactions. This section assumes that
merchants will have access to the reports provided in the PCCharge GUI and that these reports can be
compared to reports available in the integrated application.

Processing Debit transactions consists of six steps:

1) By performing the first Debit card transaction of the day, the batch is opened.
2) Run transactions throughout the day.
3) After processing has been completed for the day, it is time to prepare for settlement:

a. Look at the PCCharge Daily Transaction Summary Report for the day.
b. Compare the PCCharge Daily Transaction Summary Report with summary data provided

by the integrated integration.
c. Does the report look correct and do the totals match up with the integrated

application‘s totals?

4) If the reports indicate discrepancies, use the PCCharge Debit Summary report to investigate
and resolve any discrepancies.

5) If the processor is Host based, settlement will occur automatically.
6) If the processor is Terminal based, settlement must be done manually. Start the settlement

process now.

Repeat these six steps each day of processing debit card transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 48

Check Processing

Check Guarantee and Check Verification services do not involve an electronic transfer of funds. The
merchant performs Check Verification to determine that if check writer has an account and if the
check writer has any current outstanding (bounced) checks. Check Guarantee services extend a
guarantee that the merchant will get his money, even if the check bounces. Normally, a higher fee is
charged for guarantee service (usually a fee similar to credit card processing fees).

Check Verification and Check Guarantee are one-step processes.

There are three types of Check transactions:

1) Check Verification - Verification allows the merchant to verify that the check writer has a
checking account and does not have any outstanding bad checks.

2) Check Guarantee - Guarantee allows the merchant to verify that the check writer has an
account and guarantees that the funds are available.

3) Check Conversion – Conversion allows the merchant to use the MICR information on a check to
electronically deposit funds. This transaction eliminates the need to deposit a paper check.

Check Conversion

Check Conversion is a process by which a checking account is debited electronically.

Check conversion is a two-step process. As with credit cards, there is a secondary transmission of
information needed to complete a transaction. The second step is called Truncation Close. The
important thing to remember is that without re-transmission of the check information, the merchant
will not receive their money. Every day that a merchant performs truncations, they should perform a
Truncation Close after all transactions are complete.

PCCharge Version 5.9.0
Updated 2/8/2010

 49

Check Transactions

There are a few different types of check conversion transactions. The following is a list of actions with
general descriptions:

Verify – This action allows the merchant to verify that a checking account exists for the customer
and guarantees that the amount of the transaction is available. This action also allows the
merchant to perform the first half of a sale transaction. This action does not make information
available for re-transmission.

Sale – This action reduces the balance of the customer‘s checking account. A sale actually
performs two functions. First, a sale will Verify / Guarantee a check. Second, it will make the
transaction available for re-transmission.

Void – This action removes a Sale or Force transaction from the re-transmission information. The
transaction will be deleted; no funds will be received from this transaction. The Void Sale action is
used to correct mistakes and on same day returns. This action can only be performed before re-
transmission.

Force – This action makes a verified check transaction available for re-transmission. A Verify
followed by a Force is equivalent to a Sale.

A Normal Check Conversion Processing Day

This section discusses a normal day of processing check transactions. This section assumes that
merchants will have access to the reports provided in the PCCharge GUI and that these reports can be
compared to reports available in the integrated application.

Processing Check transactions consists of six steps:

1) By performing the first check conversion transaction of the day, the batch is opened.
2) Run transactions throughout the day.
3) After processing has been completed for the day, it is time to prepare for settlement:

a. Look at the PCCharge Daily Transaction Summary Report for the day.
b. Compare the PCCharge Daily Transaction Summary Report with summary data provided

by the integrated integration.
c. Does the report look correct and do the totals match up with the integrated

application‘s totals?

4) If the reports indicate discrepancies, use the PCCharge Check Summary report to investigate
and resolve any discrepancies.

5) If the processor is Host based, settlement will occur automatically.
6) If the processor is Terminal based, settlement must be done manually, start the settlement

process now.

Repeat these six steps each day of processing check conversion transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 50

EBT Processing

Electronic Benefits Transfer (EBT) is a way of issuing and processing certain benefits electronically. The
government issues Food Stamps and aid to families with dependent children on EBT cards that resemble
credit or debit cards. The government is issuing Social Security payments, Disability payments, and
many other government issued payments on these EBT cards. With EBT processing, these payments can
processed just as a debit card would be processed. More and more state governments and the federal
government will be moving to this form of payment processing to reduce paper work and control fraud.

With EBT transactions, keep these two simple rules in mind.

1) EBT transactions can only be performed in a Retail or "face to face" environment. If the
merchant is a Mail Order type business, they cannot perform EBT transactions.

2) EBT transactions require that the merchant have a card swipe and PINpad attached to their
computer.

As with debit card processing, EBT processing is a two-step process. EBT processors are typically Host
based. As with every Host based System, merchants may have the ability to be set up for either Time
Initiated (Automatic) Close or Manual Close.

There are four types of EBT card transactions. The types are based on the kind of benefit being
processed. For instance, if the merchant will process a transaction with food stamps, they will want to
use the transaction type called Food Stamps. The reason for the different types of transactions is that
there are different rules governing each type of benefit.

1) Cash – Use this transaction type to process a transaction with an EBT card that was issued for a
Social Security payment.

2) Food Stamp – Use this transaction type to process a food stamp transaction to deduct money
from the EBT card.

3) Food Stamp Credit – Use this transaction type to process a food stamp transaction to credit
money back onto the EBT card.

4) Account Inquiry – This transaction allows the merchant to inquire into a customer's account.
The merchant is able to dial into the EBT processing company and view a customer‘s account.
This transaction is not specific to a benefit type. Merchants will be able to perform an inquiry,
regardless of the type of benefit.

In the next four sections, we will break down each transaction type and describe each action available.

Cash EBT Transactions

All transactions that are not food stamp related should be processed as Cash EBT Transactions. Cash
EBT transactions are very similar to debit transactions because customers can receive cash back from
transactions.

There are three types of cash transactions. To maintain consistency, they will be referred to as
actions.

1) Withdrawal – This action deducts from the cardholder's limit to buy. Money will be deducted
from the account.

2) Post – This action makes an approved Voice Authorization transaction available for re-
transmission. This action is the second half of a withdrawal.

3) Void – This action removes a withdrawal transaction from the re-transmission information. The
transaction will be deleted. Merchants will not receive funds from this transaction. Use the

PCCharge Version 5.9.0
Updated 2/8/2010

 51

Void action to correct mistakes and on same day returns. This action has to be performed on
the same day as the original transaction.

Food Stamp EBT Transactions

When performing a sale transaction using food stamp benefits, use the Food Stamp EBT Transaction.

1) Withdrawal – This action deducts from the cardholder's limit to buy. Money will be deducted
from the account.

2) Post – This action makes an approved Voice Authorization transaction available for re-
transmission. This action is the second half of a withdrawal.

3) Void – This action removes a withdrawal transaction from the re-transmission information. The
transaction will be deleted. Merchants will not receive funds from this transaction. Use the
Void action to correct mistakes and on same day returns. This action has to be performed on
the same day as the original transaction.

Food Stamp Credit EBT Transactions

When performing a return transaction using food stamp benefits, use the Food Stamp Credit EBT
Transactions.

1) Withdrawal – This action increases the cardholder's limit to buy. Funds will be credited back
to the account.

2) Post – This action makes an approved Voice Authorization transaction available for re-
transmission. This action is the second half of a withdrawal.

3) Void – This action removes a withdrawal transaction from the re-transmission information. The
transaction will be deleted. Use the Void Sale action to correct mistakes. This action has to
be performed on the same day as the original transaction.

Account Inquiry EBT Transaction

This transaction type is intended only as a maintenance function. It is used when merchants need to
verify that there is a certain amount in a customer EBT account. Merchants simply enter the card
number and expiration.

A Normal Day of Processing EBT Transactions

This section discusses an average day of processing EBT transactions. This section assumes that
merchants will have access to the reports provided in the PCCharge GUI and that these reports can be
compared to reports available in the integrated application.

Processing EBT transactions consists of six steps:

1) By performing the first EBT transaction of the day, the batch is opened.
2) Run transactions throughout the day.
3) After processing has been completed for the day, it is time to prepare for settlement:

a. Look at the PCCharge Daily Transaction Summary Report for the day.
b. Compare the PCCharge Daily Transaction Summary Report with summary data provided

by the integrated application.
c. Does the report look correct and do the totals match up with the integrated

application‘s totals?

PCCharge Version 5.9.0
Updated 2/8/2010

 52

4) If the reports indicate discrepancies, use the PCCharge EBT Summary report to investigate and

resolve any discrepancies.
5) If the processor is Host based, settlement will occur automatically.
6) If the processor is terminal based, settlement must be done manually. Start the settlement

process now.

Repeat these six steps each day of processing EBT transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 53

Gift Card Processing

A typical gift card program allows the merchant to offer their customers‘ full-color, plastic electronic
gift cards instead of traditional paper gift certificates. Customers purchase these cards (using cash,
check, or credit card), and the card is activated on the spot with a simple 'swipe' through the card
reader. This activation records the starting dollar amount in a central location. The card's magnetic
strip can also identify the cardholder, card number, and merchant location for which the card has been
issued.

Gift cards are used just like a credit or debit card to purchase goods or services, and they are
authorized using a system similar to that of the credit card processing systems. The dollar value of the
purchase is subtracted from the account total in the database, the purchase is logged, and the new
card value is recorded.

A Normal Day of Gift Card Processing

This section discusses a normal day of processing gift card transactions. This section assumes that
merchants will have access to the reports provided in the PCCharge GUI and that these reports can be
compared to reports available in the integrated application.

Note: Gift Card Processors are Host based. Gift Cards do not require settlement.

Processing Gift Card transactions consists of three steps:

1) Run transactions throughout the day.
2) After processing has been completed for the day, it is time to reconcile:

a. Look at the PCCharge Daily Transaction Summary Report for the day.
b. Compare the PCCharge Daily Transaction Summary Report with summary data provided

by the integrated application.
c. Does the report look correct and do the totals match up with the integrated

application‘s totals?

3) If the reports indicate discrepancies, use the PCCharge Gift Card report to investigate and
resolve any discrepancies.

Typically, these three steps should be repeated each day of processing Gift Card transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 54

CHAPTER 4 -- Integration Information and
Settings

PCCharge Version 5.9.0
Updated 2/8/2010

 55

Warnings, Tips, and Guidelines

The following are warnings, integration tips, and guidelines to follow while integrating PCCharge. It is
suggested that integrators adhere to all guidelines to keep integrated applications running smoothly
and to keep merchants compliant with all payment processing rules and regulations.

 XML Message Format – It is strongly recommended that the XML message format is used when
integrating to PCCharge. Starting with PCCharge version 5.6.0, the PCCharge products were
updated to support the XML message format. The XML message format is recommended
because:

o Transaction requests and responses are formatted in a flexible, variable-width message

format when using XML—thus allowing any number of fields to be passed back and forth
to PCCharge. The legacy INP message format is proprietary and transaction requests
are restricted to a fixed width (256 characters). When using the INP message format,
many transaction requests require the re-use of fields.

o All new features and enhancements to PCCharge require the use of the XML message
format. Some of these features include Follow-On transactions, Transaction Inquiries,
Gratuity Adjustments, and Canadian debit.

o Starting with the 5.7 release of the DevKit, all documentation assumes that the XML
message format is being used by the integrator.

o When using the legacy INP format, some PCCharge reports may not update the
transaction status for follow-on transactions. This is a limitation of the legacy INP
format. This can be remedied by using the XML message format.

o The INP message format will eventually be phased out.

If an existing integration was written using the INP message format, it is highly recommended
that the integration be updated to use the XML message format. The XML message format is
available in all five integration methods. To enable the use of the XML message format when
using the OCX, DLL, or OLE/COM methods of integration, set the message format parameter to

―3‖ when calling the Send method.

OCX / DLL: .Send 3

OLE/COM: .Send , 3

To use the XML message format when using the File Method or TCP Interface, simply follow the
File Layout Specifications outlined in the File Method section (see page 480).

WARNING: VeriFone, Inc. takes security seriously therefore
we have enhanced our integration methods to enhance
security for sensitive data. If using File Method integration to
PCCharge we strongly suggest you consider migrating towards
a more secure integration method such as TCP/IP SSL socket
integration.

Note: The legacy INP message format is selected as default in the OCX, DLL, and OLE/COM
Methods of integration for backwards compatibility reasons. If the message format parameter
is not set to ―3‖ when calling the Send method, the various controls and classes will default to
the INP message format.

PCCharge Version 5.9.0
Updated 2/8/2010

 56

Note: Older copies of the DevKit that outline the INP message format are available for
integrators upon request. Contact VeriFone, Inc. at 800-725-9264 to request a copy of an older
DevKit manual.

 Cardholder Information Security Program (CISP). It is extremely important to always adhere
to CISP guidelines while integrating. The following are the most pertinent to the integrator:

o Magnetic Stripe Data – The integrated application should not store or print credit card

magnetic stripe data. Make sure that all printouts, files, databases, logfiles, etc. do
not contain this information. Refer to the Important Security Notice (see page 9) for
more information.

o Card Verification Data – The integrated application should not store or print the CVV2,

CVC2, or CID data from the back or front of credit cards. Make sure that all printouts,
files, databases, logfiles, etc. do not contain this information. Refer to the Important
Security Notice (see page 9) for more information.

o Credit Card Numbers / Expiration Dates – If the integrated application will store

credit card account numbers and expiration dates, these values must be encrypted in
all files, databases, logfiles, etc. Refer to the Important Security Notice (see page 9)
for more information.

 Receipt Printing – If the integrated application will print receipts, it is a good idea to provide
an option in the integrated application that allows masking of the digits of the credit card
number and the removal of the expiration date on a receipt that will be given to a customer.
The integrated application should not print the full card number and expiration date on a
customer receipt. Many states have laws regarding the information that is printed on
receipts. The merchant should familiarize themselves with the laws that pertain to them.

 Transaction Processing - Because of the single-threaded architecture of PCCharge, it is
important that the integrated application refrains from submitting (or importing) transactions
while PCCharge is performing the following functions:

o Settlement / Batch Close
o Database Repair / Compact
o Backup or Restore of configuration files and database
o Database Transaction archive

If the integrated application submits transactions while any of the above functions are taking
place, database corruption and/or lost transactions may occur. If integrating with the OCX,

DLL, or OLE/COM methods, always use the PccSysExists method to check if these functions

are being performed prior to submitting a transaction. If PccSysExists returns TRUE, do not

submit the transaction. See CHAPTER 6 – PCCharge Integration Methods for more information

on using the PccSysExists method. If using the File Method, always check for the presence

of the SYS.PCC file in the PCCharge directory prior to submitting the transaction. If this file
appears in the directory, the integrated application should not submit the transaction. The

contents of the SYS.PCC file can be checked to determine what function is being performed
by PCCharge. Refer to the section SYS.PCC Codes and Descriptions for more information. If

using the TCP Interface, the SYS.PCC check is not necessary. When using the TCP Interface, if
PCCharge is "busy" performing tasks, it will either queue up the transaction and process it once
the task has been completed (such as in batch settlement) or it will return a "transaction
cancelled, system busy" message if other tasks are running.

 Direct Database Access - If an integrated application will access the PCCharge database

(pccw.mdb) directly, it is important that the integrated application refrains from accessing

PCCharge Version 5.9.0
Updated 2/8/2010

 57

the database while transactions are being processed or while batches are being settled.
Because of the limitations of Microsoft Access, if an integrated application tries to access the
database (even in read-only mode), PCCharge may not be able to read or update records in
the database. This has been known to cause database corruption, settlement errors, and lost
transactions.

 Remote Access - We currently do not support accessing PCCharge via Windows Remote
Desktop, Virtual Private Network (VPN), or any other remote interface application. Programs
like these allow PCCharge to initiate multiple instances of itself, causing lost transactions,
duplicate charges, and database corruption. Instead, we recommend that you use either
PCCharge Client or PCCharge DevKit (via integration) to remotely access PCCharge.

 Terminal Service environment - PCCharge is not supported in a Terminal Service
environment. Terminal Services allows multiple instances of the same application to run
simultaneously. PCCharge cannot be supported in such an environment. Running multiple
instances of PCCharge often results in duplicate charges and lost transactions.

 PCCharge GUI - Merchants should not attempt to process transactions or run reports directly
from the PCCharge GUI while the integrated application is processing transactions or settling
batches. If the merchant wishes to process transactions or run reports directly with PCCharge
(instead of through the integrated application), it is highly recommended that they use the
PCCharge Client. The PCCharge Client is included on the PCCharge Pro and Payment Server
CD, and can be installed on the same (or on a different) computer as PCCharge. The
PCCharge Client has payment processing and reporting capabilities.

 Default User Name - The default user name, User1, should not be renamed under any
circumstances. PCCharge relies on this user name to perform several internal functions. If
different user names are desired, they should be added in the PCCharge ―Users‖ setup screen.
See the section Multi-User Support (see page 62) for more information on users.

 Clearing Variables - If the OCX, DLL, or OLE/COM methods of integration will be used, always

destroy the object (or use the Clear or ClearVariables methods) after the transaction has

been processed, the results have been retrieved, and the DeleteUserFiles method has

been called. Running the next transaction without clearing the properties and methods from
the previous transaction has been known to cause duplicate transactions and double-charges.

 Duplicate Transactions – It is very important that merchants always enable the ―Require

Duplicate Transactions to be Forced‖ option in the PCCharge configuration screen

and that the integrated application handles duplicate transactions properly. A duplicate
transaction is defined as a transaction that contains the same account number, the same
expiration date, and the same amount on the same day. If the forced duplicates option is
enabled and a duplicate transaction is submitted to PCCharge, PCCharge will respond

immediately with the error response ―Duplicate Trans; F+Card# to Force‖. Enabling
the forced duplicates option ensures that customers are not double charged because of errors
(either human error, an error in the integrated application, or an error in PCCharge). If the
duplicate transaction is legitimate, the integrated application should provide the end-user the

ability to ―force‖ the transaction—which is defined as adding the character ―F‖ to the

beginning of the card number. This character will override the forced duplicates option on a
per-transaction basis. Note: The forced duplicates option is enabled by default in PCCharge,

but many merchants disable it when the ―Duplicate Trans‖ error message occurs—thus
potentially allowing any transaction to be duplicated.

PCCharge Version 5.9.0
Updated 2/8/2010

 58

 Enhanced Transaction Force – PCCharge supports an enhanced transaction force feature.
This feature allows forcing a duplicate transaction unless the ticket number is the same as a

previous transaction. By placing an ―E‖ in front of the card number, PCCharge is instructed to
force the transaction unless all of the standard fields for a duplicate transaction (account
number, expiration date, and amount) PLUS the ticket number are identical to a previous

transaction. For example, if the ―E‖ is included in front of the account number and the ticket

number is different, the transaction will be accepted. However, if the ticket number is the
same, the transaction will be considered a duplicate and will return the error response

―Duplicate Trans; F+Card# to Force‖.

 FDMS South / NaBanco Special Note - FDMS South / NaBanco (NB) will occasionally return
certain pieces of transaction information that contain spaces. PCCharge changes each of these
spaces to an asterisk (*) to make the resulting information more legible. Previous versions of
PCCharge did not convert these spaces to asterisks. Therefore, if upgrading from a previous
version of the DevKit and the integrated application supports FDMS South / NaBanco, it is
recommended that the application be updated to correctly parse the information with
asterisks. Unexpected results may occur if the application is not updated.

 Global East/NDC Special Note – When processing manual (non-swiped) Visa or Discover card
transactions where the CVV or CID values are not supplied, the following data must be passed
in the CVV2 parameter:

o 0 – Deliberated bypassed
o 2 – CVV value illegible
o 9 – Card has no CVV value

 CES Special Note – When processing manual (non-swiped) Visa or Discover card transactions
where the CVV or CID values are not supplied, the following data must be passed in the CVV2
parameter:

o 0 – Deliberated bypassed
o 2 – CVV value illegible
o 9 – Card has no CVV value

 Elavon (NOVA) Special Note – When processing manual (non-swiped) Visa or Discover card
transactions where the CVV or CID values are not supplied, the following data must be passed
in the CVV2 parameter:

o 0 – Deliberated bypassed
o 2 – CVV value illegible
o 9 – Card has no CVV value

 ADSI Special Note – When processing manual (non-swiped) Visa or Discover card transactions
where the CVV or CID values are not supplied, the following data must be passed in the CVV2
parameter:

o 0 – Deliberated bypassed
o 2 – CVV value illegible
o 9 – Card has no CVV value

PCCharge Version 5.9.0
Updated 2/8/2010

 59

Timeouts

It is very important that integrated applications handle Timeout errors properly so that customers are
not double-charged. Several of the PCCharge integration methods support options for handling
Timeout errors.

Understanding Timeouts

The first step in handling Timeout errors properly is to understand why they occur. A Timeout error
will occur if a transaction has not completed processing in PCCharge in the allotted time that the
integrated application has provided. For example, if the integrated application has allotted 20 seconds
for a transaction to be processed, the integrated application will only poll for a transaction response
for 20 seconds. If a response has not been received from PCCharge in that amount of time, a Timeout
error will occur in the integrated application. Even if a Timeout error occurs in the integrated
application, PCCharge will continue to process the transaction. Imagine, in this example, the
transaction was processed by PCCharge in 25 seconds, and was approved. Because the transaction took
more than 20 seconds to complete, the integrated application assumes the transaction was not
successful. However, PCCharge received an approved response and added the transaction to the
batch. The problem this could cause is that a cashier will receive a message stating the transaction
timed out will assume it was not approved--when it really was approved. The cashier will then attempt
process the transaction again, thus potentially double-charging the customer‘s card and creating other
reconciliation issues.

Transaction Delays

Transaction delays are the main reason why Timeout errors occur. Most delays are caused by payment
processor issues, but some delays can be caused by modem issues, Internet connectivity issues, or
configuration settings. The most typical causes for transaction delays are:

 PCCharge is attempting to process a transaction over the Internet, and the Internet connection
or the payment processor‘s TCP/IP interface is down or is running slow.

 PCCharge is attempting to process a transaction using a dial-up modem and the modem is
unable to connect, the payment processor‘s network is down, or the transaction is simply
taking a long time to complete.

 PCCharge is attempting to process a transaction using a modem and the primary phone number
is busy. PCCharge hangs up, pauses, and then dials the secondary number to receive an
authorization.

 The Internet connection or the payment processor‘s TCP/IP interface is down, and PCCharge
attempts to process the transaction using a modem (Dial-Up Modem Backup).

 PCCharge has several transactions waiting in the queue during a busy period, thus delaying
transaction processing. See the section Multi-User Support (see page 62) for more information
on transaction queuing.

To determine how much time should be allotted to PCCharge to process transactions, the merchant
should take into consideration all of the reasons why transaction delays would occur.

PCCharge Version 5.9.0
Updated 2/8/2010

 60

Dial-Up Modem Backup Settings

PCCharge provides a Dial-Up modem backup feature for many of the payment processors that support
Internet connectivity. When activating this feature, it is important that the default value in the setting
―Internet Authorization Timeout Value (seconds)‖ be reviewed. This setting is located in the Advanced
settings of the processor‘s extended data screen.

This setting determines how long PCCharge will wait for an Internet transaction to complete prior to
―failing over‖ to the modem to process the transaction. Because most Internet transactions take only a
few seconds to complete, the default value of 60 seconds should be lowered. If not, a cashier would
have to wait for at least a minute (or more) for each transaction to process. If using the Dial-Up
Modem Backup feature, this setting‘s value will need to be factored in when determining the
integrated application‘s Timeout value.

Setting the Integrated Application‟s Timeout Value

To allow integrators to handle Timeouts properly, the various integration methods support a Timeout

variable. If using the OCX, DLL, or OLE/COM Methods of integration, integrators may use the TimeOut

property to set this variable. The default Timeout setting in each control and class is 90 seconds. If

using the TCP Interface, integrators may use the TXN_TIMEOUT tag to set this variable.

Note: There is no Timeout setting for the File Method. Integrators must build in their own support for

timeouts when using the File Method (the TXN_TIMEOUT tag has no effect on transactions submitted

via the File Method).

When setting the Timeout value, several factors should be taken into consideration:

1. The maximum amount of time it would take to process a transaction:

a. A typical transaction processed over the Internet takes about 3-5 seconds; a typical
transaction that is processed using a modem averages about 25 seconds, but can take
longer.

b. If using a modem to process transactions, PCCharge will attempt to dial the secondary

number if the primary number is busy. This can add 25 seconds or more to the
transaction.

c. If an Internet transaction fails, PCCharge will attempt to process the transaction using

the modem if the Dial-Up Modem Backup feature is activated. The ―Internet
Authorization Timeout Value (seconds)‖ setting must be factored in as well as the dial
time. (Again, if the primary phone number is busy, PCCharge will attempt to dial the
secondary number.)

2. How long the merchant is willing to wait for a response after the ―maximum amount of time‖

has elapsed.

Setting the Timeout to a high number (90 seconds, for example) would typically take the above factors
into consideration, thus lowering the number of Timeout errors that would occur. However, setting
this value too high could cause problems. For example, if a payment processor‘s network was down,
cashiers would have to wait 90 seconds each time they submitted a transaction to receive an error
response.

PCCharge Version 5.9.0
Updated 2/8/2010

 61

Setting the Timeout to a low number (10 seconds, for example) would alleviate the cashier wait time,
but a greater number of Timeout errors would occur. Most likely, none of the transactions that used
the Dial-Up Modem backup feature would register as approved in the integrated application. Cashiers
would surely attempt to process the transaction again, thus double-charging a customer‘s card.
However, if Duplicate Transaction checking is enabled, the cashier would immediately receive a
―Duplicate Trans‖ message. See the description of ―Duplicate Transactions‖ in the Warnings, Tips,
and Guidelines section (see page 55) for more information.

The best way to determine how many seconds should elapse before a Timeout error occurs is to test
the integrated application thoroughly. Testing will help to determine the normal amount of time that
it takes to process transactions.

Handling Timeouts

OCX, DLL, or OLE/COM

If using the OCX, DLL, or OLE/COM methods of integration, the Timeout ―countdown‖ begins when the

Send method is called. Once the number of seconds set in Timeout has elapsed, an error event will

fire or a response with a Result of ―Error‖ will be returned. An error code of ―6‖ will also be set (this

can be retrieved using the .GetErrorCode method) to indicate a Timeout error.

Once a Timeout error occurs, it is suggested that the Cancel or Abort methods (if available) be

called immediately to cancel the transaction. Because there is no guarantee that the Cancel or

Abort methods will successfully cancel the transaction, it is suggested that a message be provided to
the user of the integrated application that indicates a Timeout error has occurred. It is also suggested
that the user review the PCCharge reports to determine whether the transaction was canceled properly
or successfully processed.

Note: If using the OLE/COM Method of integration, the Timeout value will only be used if the
application is written to process transactions in an asynchronous manner. If programming
synchronously, PCCharge will ignore the Timeout value and always use pre-set timeouts when
processing transactions. Changing the Timeout value when programming in a synchronous manner will
not work due to the internal workings of PCCharge.

TCP Interface

If using the TCP Interface and the TXN_TIMEOUT flag, the ―countdown‖ begins once PCCharge

receives the transaction request. Once the number of seconds set in TXN_TIMEOUT have elapsed,

PCCharge will return a RESULT of ―NOT CAPTURED― and an AUTH_CODE of ‖Timeout― and will

attempt to cancel the transaction in progress. Because there is no guarantee that the transaction will
be successfully canceled, it is suggested that a message be provided to the user of the integrated
application that indicates a Timeout error has occurred. It is also suggested that the user review the
PCCharge reports to determine whether the transaction was canceled properly or successfully
processed.

File Method

Although a tag named TXN_TIMEOUT appears in the File Layout section of the File Method, this tag

may only be used when processing transactions using the TCP Interface. The integrated application
must provide its own Timeout handling.

PCCharge Version 5.9.0
Updated 2/8/2010

 62

WARNING: VeriFone, Inc. takes security seriously therefore we have
enhanced our integration methods to enhance security for sensitive data. If
using File Method integration to PCCharge we strongly suggest you consider
migrating towards a more secure integration method such as TCP/IP SSL
socket integration.

Multi-User Support

Multi-user support can be defined as PCCharge‘s ability to:

 Support multiple workstations or registers

 Handle simultaneous transaction requests

PCCharge is able to handle multiple workstations and simultaneous request through the use of ―Users‖.
Users are unique PCCharge user names that must be purchased and configured in PCCharge by the
merchant. Users must also be supported by the integrated application. The following describes how
and why the Multi-User feature of PCCharge should be supported.

Note: Both PCCharge Pro and PCCharge Payment Server support multiple users. All PCCharge
integration methods support multiple users.

Support for Multiple Workstations

In order for a integrated client/server application to work properly with PCCharge, PCCharge and each
of the integrated client stations must support and be configured to use unique PCCharge user names.

In a typical client/server environment, PCCharge will be running on a Windows-based computer in a
data center (or in the back office of a restaurant). Each employee or clerk (or waiter/waitress) that
needs to process payments will typically have the integrated client running on their own workstation
(or restaurant station). When a credit card, debit card, check, etc. is swiped (or keyed in), the
integrated client will communicate to PCCharge over the LAN. In order for the integrated client and
PCCharge to know which transaction response matches each workstation request, the integrated client
must be uniquely identified by a user name.

When coding to support this scenario, make sure that the user name property can be set for each
integrated client by the end-user. Typically, this user name setting would appear in a setup menu or
properties page provided in the client.

When configuring each client station, the merchant should assign a unique user name to each client

station (such as ―User1‖, ―User2‖, etc.). Once configured, this setting determines what is set in the

―User‖ property of the Active X controls, OLE/COM classes, or TCP Interface. If using the File Method,
the property will determine the name of the text file created by the client. In order to communicate
to PCCharge using the user names that have been set up at each client station, each user name must
be added in PCCharge.

User names are added by utilizing the User settings screen in the PCCharge GUI. This screen can be
accessed from the Setup | Users menu in PCCharge. Alternatively, the Unlimited User License can be
added rather than adding individual user names – see below for more information.

Note: Do not rename the default user name (User1). PCCharge uses this user name for several
internal functions.

PCCharge Version 5.9.0
Updated 2/8/2010

 63

Support for Simultaneous Transaction Requests

PCCharge is a single-threaded application. This means that PCCharge can only process one transaction
at a time. However, PCCharge can be configured to handle multiple simultaneous transaction
requests. Once configured to support multiple simultaneous transaction requests, PCCharge still only
processes these requests one at a time. PCCharge handles multiple requests through the use of
queuing. The queuing feature of PCCharge processes the requests in a ―first in first out‖ (FIFO)
manner.

Simultaneous transaction requests usually occur in the following environments:

 Client/Server (i.e., multiple terminals, cash registers, or workstations)

 eCommerce enabled web-sites

 Multi-threaded applications

Support for simultaneous transaction requests is very similar to multiple workstation support. In fact,
once multiple workstation support has been configured (see above), the ability to submit simultaneous
transaction requests is already supported. However, the use of multiple workstations is not necessarily
required to support simultaneous transaction requests.

To support simultaneous transaction requests, Multi-user support must be activated in PCCharge. At
least two users or the Unlimited User License must be set up. When coding an application to send

multiple requests, each request must have a unique user name. For example, ―User1‖, ―User2‖, etc.

Again, PCCharge will ―queue up‖ these transactions and will process them in the order that they are
received.

Keep in mind that no two transaction requests can be submitted at the same time with the same user
name. To reuse the same user name, the integration must wait until the transaction has been
processed completely by PCCharge, the client has received the response, and deleted the response file
(except for the socket method, there is no response file). Only then can the user name be reused to
send another transaction request.

Known Conflict with Simultaneous Transaction Requests

PCCharge has a known issue with processing simultaneous transactions that have certain
characteristics. ―Invalid TroutD‖ errors may be returned when multiple transactions are submitted to
PCCharge and have all the following characteristics:

 The transactions are submitted simultaneously. Specifically, multiple transaction requests
are all submitted to PCCharge within 0.5 seconds (0.5 seconds is the default ―Queue Timer
Interval‖ setting in PCCharge. This is how often PCCharge polls for incoming transaction
request files.)

 The transactions that are submitted use the same processing company but have different
merchant accounts with different communication settings. For example, if TSYS will be used
as the processing company, one transaction will use a TSYS merchant account that is set up to
process via modem and another transaction will use a TSYS merchant account that is set up to
process via the Internet.

or
Some transactions are processed by the processing company and others are processed via
Split-dial directly to AMEX. For example, if Split-Dial is activated, a Visa credit card
transaction will be processed by TSYS, and an American Express credit card transaction will be
processed via Split-dial directly to American Express.

PCCharge Version 5.9.0
Updated 2/8/2010

 64

Again, keep in mind that all of the above characteristics must be met in order for this issue to occur—
and this error only occurs when submitting simultaneous transactions. Currently, the only workaround
is to avoid submitting simultaneous transactions that have all of the above characteristics. If the error
occurs, the transaction should be re-submitted.

The issue occurs because of the design of the queuing module in PCCharge. VeriFone, Inc. is currently
working on updating the queuing module to handle simultaneous transaction requests properly. This
update will be available in a future release of PCCharge.

Setting up Multi-user support

Each copy of PCCharge Payment Server and PCCharge Pro ships, by default, with a single user license
activated. If the integration will be multi-threaded, will be used in a client/server environment, or
will somehow send more than one transaction at a time to PCCharge, support for additional users or
unlimited users is required.

The integrator has the option to decide whether the application supports additional users or unlimited
users or both.

Note: Every single transaction that PCCharge processes has a user name assigned to it. If the
transaction originates in the PCCharge GUI or is submitted through the file interface (the OCX, DLL,
OLE/COM, or File Methods), the file name that is used is the PCCharge user name. If the transaction is

sent through the TCP Interface, the <USER_ID> field assigns the user name to the transaction once the

transaction has begun processing in PCCharge.

Note: If using the File Method, the name of the file must match the <USER_ID> tag contained in the
transaction request message.

Additional Users

Typically, merchants would add additional users if they have a static number (and usually a small
amount) of workstations or client machines that will need to access PCCharge. For example, if a
merchant had three ―cash registers‖ or workstations, they would need to purchase two additional users
(PCCharge already includes the first user license), and then set up the three registers or workstations
with the three unique user names. Now, when the registers or workstations submit transactions,
PCCharge can identify each register or workstation by its unique user name. Also, if transactions are
sent from more than one register simultaneously, PCCharge can now queue these transactions. In
essence, this merchant has enabled ―queuing‖ and the queue can hold up to three transactions.

Note: It is recommended that the PCCharge naming convention for users (User + X) be used when

adding additional users. PCCharge ships by default with a single user named ―User1‖. When adding

users, VeriFone, Inc., suggests that merchants use ―User2‖, ―User3‖, etc. It is not a requirement
that this naming convention be followed, however, if there are problems in the future, using the
default naming convention may decrease the amount of time needed on a technical support call.
Regardless, all user names must be eight characters or less and can be alphanumeric, no spaces.

Note: Do not rename the default user name (User1). PCCharge uses this user name for several

internal functions.

If additional users are not added to PCCharge and a client is set up to send transactions with a user

name other than ―User1‖, the transactions will fail. Specifically, if any client attempts to process

PCCharge Version 5.9.0
Updated 2/8/2010

 65

transactions with user names that do not appear in the PCCharge user screen, the transaction requests
will be immediately rejected by PCCharge and the message "User Not Found" will be returned.

If the integrated application will support additional users, merchants will need to purchase additional
user licenses and activate them in PCCharge to take advantage of the Multi-user features of the
application. Once purchased, additional user licenses may be activated by contacting VeriFone, Inc.‘s
technical support department or by submitting an additional user request via the Support section of
VeriFone, Inc.‘s website: http://www.pccharge.com.

For information on how to add additional users to PCCharge Pro or PCCharge Payment Server, see the
product manuals for each product. For information on pricing, merchants my contact an authorized
VeriFone, Inc. reseller or call 800-725-9264.

Unlimited User License

Typically, merchants would opt for an unlimited user license if they have a variable number and/or a
large number of workstations or client machines that will need to access PCCharge.

For example, if a merchant had twenty ―cash registers‖ or workstations, it is recommended that they
purchase and activate an Unlimited Users license. This would allow the merchant to set up as many
registers or workstations as needed. The only requirement for Multi-User processing with an Unlimited
User License is that all registers or workstations would need to be set up with unique user names. This
allows PCCharge to identify each register or workstation by its unique user name. Also, if transactions
are sent from more than one register simultaneously, PCCharge can now queue these transactions. In
essence, this merchant has enabled ―queuing‖ and the queue can hold an unlimited number of
transactions. If the merchant needs to add registers or workstations in the future, there are no
additional costs or configuration in PCCharge that would need to occur. The merchant would simply
set up any new client machines with unique user names and begin processing.

An example of an environment that would require Unlimited Users would be a real-time eCommerce-
enabled website. The Unlimited User License allows multiple customers to submit payments at the
same time. Typically, real-time web applications would use a user naming scheme involving

SessionIDs (a variable used by web servers).

Note: Some developers prefer integrating to support only the Unlimited User License. This type of
integration assumes that the Unlimited User License will be activated in PCCharge. The developer can
programmatically create unique user names on the fly, thus simplifying the coding and configuration
aspects of a client/server installation or multi-threaded application.

Note: By adding the Unlimited User license to PCCharge, the restriction of the client application‘s user
name having to match a user name set up in PCCharge is removed. Any valid alphanumeric eight
character or less user name can be used by the client. However, each user name, when submitted
must be unique—it cannot be the same as another transaction‘s user name. Once the transaction has
been processed, however, the user name can be reused.

If the integrated application will support unlimited users, merchants will need to purchase the
unlimited user license and activate it in PCCharge to take advantage of the Multi-user features of the
application. Once purchased, the unlimited user license may be activated by contacting VeriFone,
Inc.‘s technical support department or by submitting an additional user request via the Support section
of VeriFone, Inc.‘s website: http://www.pccharge.com/. For information on how to add additional
users to PCCharge Pro or PCCharge Payment Server, see the product manuals for each product. For
information on pricing, merchants my contact an authorized VeriFone, Inc. reseller or call 800-725-
9264.

http://www.pccharge.com/
http://www.pccharge.com/

PCCharge Version 5.9.0
Updated 2/8/2010

 66

Limitations of PCCharge‟s Multi-User Feature

Although there are no technical or programmatic limitations of how many users are supported or how
many transactions can be processed by PCCharge, there are realistic limitations.

Because PCCharge is a single-threaded application, it can only process one transaction at a time. This
could cause throughput issues if a large number of transactions are submitted simultaneously. In
addition, if the merchant will be processing transactions via modem, or if PCCharge is used to connect
via modem to multiple processors, delays can become severe.

For example, if 50 transactions are submitted simultaneously to PCCharge (and PCCharge is configured
to support that many simultaneous transactions), PCCharge will queue up all 50 transactions and
process them one at a time. If the Internet will be used to connect to the processing company,
processing will average about four seconds per transaction. In this scenario, it will take almost 3.5
minutes for PCCharge to process all of the transactions in real-time (meaning the client that submitted
the 50th transaction will have to wait almost 3.5 minutes to get a response.) If a customer or clerk is
waiting on the response, this amount of time may not be acceptable. Further, if PCCharge is required
to dial different processors during this type of scenario, all of the dial and disconnect time would be
factored in as well. This could greatly increase the amount of time it takes for the operation to
complete.

Aside from throughput issues, the way PCCharge stores transaction data should also be taken into
consideration. PCCharge stores all transaction data in a Microsoft Access database. Access databases
are designed for use in a single-user or small workgroup environment. Access can easily handle a
moderate amount of workstations and several hundred transactions per day. But, because of the
characteristics of Microsoft Access, PCCharge is not designed to be implemented in an enterprise
environment. If PCCharge is expected to store thousands of transactions a day; reporting, archival,
settlement, and other operations may become difficult to perform or may take a long time to
complete.

Alternatives

If a single copy of PCCharge is being used to support many workstations (or even multiple store
locations), consider implementing multiple copies of PCCharge. Adding additional copies of PCCharge
to a location or simply installing a copy of PCCharge at each store may alleviate throughput and data
storage issues. Only one copy of PCCharge should be installed on a single machine. Keep in mind that
merchants will need to purchase additional copies of PCCharge and may incur additional expenses for
supporting multiple merchant accounts in this type of scenario. Merchants should check with their
processing company or merchant services provider for more information on additional merchant
account fees.

If using multiple copies of PCCharge is not an option, consider integrating and supporting RiTA Server
or IPCharge. IPCharge is VeriFone‘s new gateway product. The IPCharge DevKit is included with the
PCCharge DevKit. RiTA Server is a scaleable, multi-threaded application that is designed to support
high transaction volumes and unlimited merchant numbers and users. If the File Method or TCP
Interface method is used for the PCCharge integration, integration to RiTA Server would be very
similar.

PCCharge Version 5.9.0
Updated 2/8/2010

 67

Multi-trans Wait

Enabling the Multi-trans Wait feature allows PCCharge to attempt to keep the modem connected to the
processor for a certain amount of time (usually a few seconds) after each transaction is processed. If
PCCharge will communicate to the processing company via dial-up modem, the Multi-trans Wait feature
of PCCharge can greatly increase throughput during busy periods or when performing batches of
transactions. As long as transactions are submitted to PCCharge within a short period of time (or if
transactions are currently queued in PCCharge), each transaction will be processed on the same call
and will not require a re-dial to the processing company. If Multi-trans Wait is not supported by the
processor, a call will need to be made to the processing company for each transaction that is
submitted.

Note: If the merchant will connect via the Internet to do payment processing, the Multi-trans Wait
feature has no effect on processing.

Although PCCharge supports Multi-trans Wait, whether or not this feature will actually hold the modem
line open depends completely on the processing company. If the processor doesn‘t support Multi-trans
Wait, the processor will send a hang up command to PCCharge after each transaction. Also, the length
of time that the call will stay connected also depends on the processing company. The length of time
can range from half a second to twenty seconds or more.

Some processors support Multi-trans by default. If Multi-trans does not appear to be working after the
Multi-trans Wait setting has been enabled in PCCharge, the merchant should contact their processing
company or merchant services provider to request that the feature be activated for their merchant
account(s). In some cases, merchants can also request how long the call will stay connected after each
transaction.

By default, Multi-trans Wait is disabled in PCCharge. This feature can be enabled in two ways:

1) Through the GUI: The merchant should check the ―Multi-trans Wait‖ option in the GUI of
PCCharge Payment Server or PCCharge Pro (Setup | Configure System | Advanced).

2) Through the API: To enable this feature programmatically, set the "Multi" property of

the OCX, DLL, or OLE/COM methods or the ―MULTI_FLAG” property in the File Method or

TCP Interface to "1" when submitting a transaction. If this setting is sent
programmatically, it will override the GUI‘s Multi-trans Wait setting.

PCCharge Version 5.9.0
Updated 2/8/2010

 68

Multi-Merchant Support

PCCharge is designed to handle multiple merchant accounts. Each PCCharge product (PCCharge Pro
and PCCharge Payment Server) includes a license for a single merchant account. In order for
merchants to use more than one merchant account in PCCharge, they must first purchase and then
activate additional merchant accounts.

Multi-Merchant Integration

In order for an integrated application to support multiple merchant accounts, the integrated
application must provide the end-user the ability to choose which merchant account will be used to
process transactions and allow this information to be passed to PCCharge. This can be accomplished by
providing a setup option that allows the end-user to specify their merchant account information and
then populating the proper properties or XML tags with that information. The merchant‘s account
information is defined as the merchant account number and a valid processor code.

For example, assume an end-user has three merchant accounts set up in PCCharge. Two of the
merchant accounts are with FDMS South (NB): 67888882701 & 67888882702, and the other merchant
account is with Chase Paymentech (GSAR): 999999999999519. In order for the end-user to designate
which merchant account should be used to process the transaction, the end-user must have a way to
indicate to the integrated application to send the proper merchant account number and the processor
code to PCCharge. In this example, if the merchant will use the second FDMS South merchant account

to process the transaction, the integration must send the ―67888882702‖ account number and the

―NB‖ processor code to PCCharge. To pass the account number and processor code using the OCX,

DLL, or OLE/COM Methods of integration, use the MerchantNumber and Processor properties. To

pass the account number and processor code using the File Methods or TCP Interface, use the

<PROCESSOR_ID> and <MERCH_NUM> tags.

Note: Choosing the processor code will be easier (and less error-prone) for the end-user if the
integrated application provides a list that allows the end-user to choose their processor code rather
than requiring them to type it in. A list of valid processor codes is located in the section DevKit
Constants (see page 141). Also, the processor drop-down lists found in the various setup screens in
PCCharge serve as accurate lists of the available processor codes.

GetMerchantInfo Method

The OCX, DLL, and OLE/COM Methods of integration provide a method named ―GetMerchantInfo‖.

This method is located in Charge.OCX, in the Batch class of PSCharge.dll, and in the PccConfig
OLE/COM class. This method provides the integrated application with a string that includes a list of
merchant numbers and processor codes that are currently set up in PCCharge. In addition, it will also
return a character indicating if the processor is Host or Terminal based. Specifically, this method

accesses the tid.pcc file that resides in the PCCharge directory, and will return all merchant
accounts, processor codes, and terminal/host indicators that are set up in the file. The following is an
example of a string that will be returned if three merchant numbers are set up in PCCharge:

<STX>CES <FS>000000927996296767<FS>T<GS>GSAR<FS>999999999999519<FS>T<GS>VISA

<FS>999999999911<FS>T<ETX>

Once retrieving this information at run-time, the integrated application could then display a user-
friendly list of all of the merchant accounts that are set up in PCCharge. The end-user could then
choose the proper merchant account from the list. This list would eliminate the need for an end-user
to key in merchant account numbers and would reduce errors caused by typos.

PCCharge Version 5.9.0
Updated 2/8/2010

 69

OCX / DLL Method Note: PCCharge does not have to be running in order for the GetMerchantInfo

method to return the string. However, a valid Path variable must be set prior to calling the

GetMerchantInfo method.

Use Default Processor

Many merchants that use PCCharge require only a single merchant account. If only a single merchant
account will be set up in PCCharge, integrators should consider supporting the ―Use Default Processor‖
option. Enabling this option in PCCharge allows the integrator to omit the merchant number and
processor code from transaction requests. If the option is enabled and the merchant number and
processor code are omitted, PCCharge will automatically use the active merchant account set up in
PCCharge to process the transaction.

The ―Use Default Processor‖ option is available in the PCCharge Configure System setup screen. This
option is disabled by default.

PCCharge Version 5.9.0
Updated 2/8/2010

 70

SSL Support

Introduction

PCCharge now offers a new method of integration. Secure Socket Layer (SSL) via TCP/IP integration
allows a developer to send transactions over a secure protocol. Due to its secure nature, this is the
method of integration we highly recommend. The SSL protocol is commonly used for managing the
security of messages sent over a local network and the Internet. SSL is supported thru the OCX: TCP/IP,
the DLL: TCP/IP as well as TCP/IP methods of integration.

PCCharge Version 5.9.0
Updated 2/8/2010

 71

SSL Configuration

This section will provide steps to install the local SSL Certificate and enable SSL within PCCharge.

Follow these steps to select the certificate within PCCharge and enable SSL:

1) Open PCCharge.
2) Go to Setup -> Configure System.
3) Click Advanced on the bottom of the window.

4) Check “Enable Secure TCP/IP Integration”.
5) Use the “Store Location” dropdown box and select “Current User”.
6) Use the “Store Name” dropdown box and select “MY”.
7) Click “Display Store”.
8) Highlight the correct certificate.

i) The current certificate being installed by PCCharge is called “PCChargeDefaultCertificate-
CA”.

ii) Prior to the final build of PCCharge 5.8.0 the certificate was called “Test-SSL-PCCharge”.
9) This should complete the setup for SSL integration with PCCharge.

PCCharge Version 5.9.0
Updated 2/8/2010

 72

SSL Integration Notes

SetSSLCertificate

The method ―SetSSLCertificate‖: User can set the local certificate to authenticate the SSL TCP/IP

request. This routine has four parameters as follows.

SSLCertStoreName : this is the name of the store. Example: “MY”

SSLCertificateLocation : this is the location of the store the certificate was

installed into. Valid values are ―0‖ for Local Machine or ―1‖
for Current User.

SSLCertIssuedBy : Issuer of the certificate. Found by looking at certificate

details in PCCharge. Example: “PCChargeDefaultCertificate-CA”

SSLCertSerialNumber : This is the serial number of the certificate; this is also found

in the certificate details in PCCharge.
 Example: “07427b6a70e37f3e”

Syntax Example:

SetSSLCertificate (SSLCertStoreName As String, SSLCertificateLocation As

String, SSLCertIssuedBy As String, SSLCertSerialNumber As String)

With the following values:

SSLCertStoreName : MY

SSLCertificateLocation : 0

SSLCertIssuedBy : PCChargeDefaultCertificate-CA

SSLCertSerialNumber : 07427b6a70e37f3e

Example:

SetSSLCertificate (“MY”, “0”, “PCChargeDefaultCertificate-CA”,

“07427b6a70e37f3e”)

This will create certificate and authenticate before sending request to SSL Server.

EnableSSL

This value must be set to True to enable SSL Integration using the OCX or DLL methods of Integration.

PCCharge Version 5.9.0
Updated 2/8/2010

 73

Custom SSL Certificates

The default PCCharge certificate “PCChargeDefaultCertificate-CA” can be used on the PCCharge
server and deployed with a POS on a workstation as well. PCCharge is also capable of using a
certificate created and issued by the integrator. The developer must provide a .PFX (PKCS#12)
formatted certificate that meets specific requirements. Here is a list of the requirements that must be
met by the certificate for use by PCCharge:

Certificate Properties Description

Version Number The version of the X.509 standard to which the certificate conforms.

Serial Number A number that uniquely identifies the certificate and is issued by the certification authority.

Certificate Algorithm
Identifier

The names of the specific public key algorithms that the certification authority has used to sign
the digital certificate.

Issuer Name The identity of the certification authority who actually issued the certificate.

Validity Period
The period of time for which a digital certificate is valid and contains both a start date and

expiration date.

Subject Name The name of the owner of the digital certificate.

Subject Public Key

Information

The public key that is associated with the owner of the digital certificate and the specific public

key algorithms associated with the public key.

Issuer Unique

Identifier
Information that can be used to uniquely identify the issuer of the digital certificate.

Subject Unique

Identifier
Information that can be used to uniquely identify the owner of the digital certificate.

Extensions Additional information that is related to the use and handling of the certificate.

Certification
Authority's Digital

Signature

The actual digital signature made with the certification authority's private key using the

algorithm specified in the certificate algorithm identifier field.

PCCharge Version 5.9.0
Updated 2/8/2010

 74

Manual SSL Certificate Install

PCCharge will install the certificate on the server automatically, but not on the POS workstation. If an
integrator needs to manually install the default PCCharge SSL certification or a certificate they‘ve
created, these are the steps required:

1) Click Start then Run.
2) Type “MMC” in the Run dialog box and hit Enter or click OK.
3) Select Add/Remove Snap-in from the File menu.
4) Click Add and select Certificates from the Add Standalone Snap-in dialog.
5) Click Add and select Computer Account from the Certificates Snap-in dialog.
6) Select Local Computer on the Select Computer window.
7) Click Finish and then Close.
8) Click OK to close the Add/Remove Snap-in window.
9) Expand the Certificates (Local Computer) folder and right-click Personal under the Certificates

tree.
10) Select Import.
11) The Import Wizard should start, click Next one time.
12) The 2nd screen should allow you to browse to your certificate. You‘ll need to change the file type

to All files (*.*).
13) Once you have found your certificate click Next, without making further changes, until you get to

Finish.

PCCharge Version 5.9.0
Updated 2/8/2010

 75

Cashier Permissions

To take advantage of the new PCI Cashier Updates, an Integrator will now have to submit the following
two tags with every transaction. NOTE: If you do not wish to send anything new, send neither tag.

 CASHIER_NAME

 PASSWORD

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

NOTE: If the developer is integrating to PCCharge Pro and will be using cashier ids and passwords,
their cashiers will have to log into the Pro user interface and change their password before they will
be able to process in the POS.

The CASHIER_NAME of ―System‖ only functions as PCCharge administrator and does not have full
production permissions. A ―System‖ user will not be able to process transactions or settle batches, but
will have full access to make changes to other users, merchant setup information, and device setup.

A Cashier will not need to log in to the PCCharge user interface as the above tags allow the cashier to
basically ―log in‖ during each transaction. If a user attempts to send the CASHIER_NAME of ―System‖
for a financial transaction, they will be blocked just as if they were operating in the PCCharge User
Interface.

New Cashier Transactions

Action Code Description

ZP Change Password

ZU Add Cashiers

ZD Delete Cashier

ZR Re-enable Cashier

ZL Log out Cashier

ZZ Get Expiration

Just like within the UI, the Add, Delete and Re-enable commands can only be performed by the
‗System‘ cashier. The ‗System‘ credentials must be passed with these commands in the request.

Additional XML Tags

For all commands except ZL: <CASHIER_NAME>, <PASSWORD>

For ZU: <ADD_CASHIER_1>, <ADD_CASHIER_2>, <ADD_CASHIER_3>, <ADD_CASHIER_4>,
<ADD_CASHIER_5>

For ZD and ZR: <TARGET_CASHIER_NAME>

For ZP: <NEW_CASHIER_PASSWORD>, <NEW_CASHIER_CONFIRM_PASSWORD>

For ZZ: <PWD_EXPIRY>

PCCharge Version 5.9.0
Updated 2/8/2010

 76

Note: The <PWD_EXPIRY> tag will not be seen in any INX that is sent through integration. However,

you will see these both in the INX and OUX portion of the IODebug and it will be sent to the integrator
in the OUX. This tag contains the cashier’s password expiration date.

PCCharge Version 5.9.0
Updated 2/8/2010

 77

Format Examples

Change Password – ZP Command

This allows a user to setup a password after installing PCCharge. This is required prior to submitting
transactions.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Sample

INX

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<CASHIER_NAME>Eric</CASHIER_NAME>

<PASSWORD>Test123%</PASSWORD>

<NEW_CASHIER_PASSWORD>New123%</NEW_CASHIER_PASSWORD>

<NEW_CASHIER_CONFIRM_PASSWORD>New123%</NEW_CASHIER_CONFIRM_PASSWORD>

<COMMAND>ZP</COMMAND>

</XML_REQUEST>

Response Code Description

51 SUCCESS

52 ―Cashier Not Found‖ – Cashier is not in the database.

53 ―Invalid Password‖ – Password is incorrect.

54 ―New Password not Strong‖ – New password does not meet minimum standards.

55 ―New Password not Confirmed‖ – New password does not match confirm password.

56 ―Password Previously Used‖ – New password is one of the previous passwords.

57 ―Password is in use‖ – New Password is the same as the current password.

58 ―Invalid Information‖ – Either the Cashier ID or the Password are empty.

Add Cashier – ZU Command

This allows integrators to setup cashiers without entering the PCCharge UI. It is possible to pass up 5
new cashiers at a time. The information is used in a name value pair setup within each tag/field.

Note: Cashier names are not case-sensitive. PCCharge will UCase all cashier names in the background,
but mixed case can be used by integrators. The Name Value Pair names ARE case-sensitive and must
be submitted in all upper case

FORMAT EXAMPLE

CASHIER_NAME <Name> CASHIER_NAME ANGIE1

PASSWORD <Password> PASSWORD P@ssw0rd

PERMISSIONS <Permissions> PERMISSIONS ||||||

Note: The Name Value Pairs with each ADD_CASHIER tag must be separated by spaces. No
carriage returns are allowed. The transaction will not be processed if carriage returns are
present within the ADD_CASHIER tags.

PCCharge Version 5.9.0
Updated 2/8/2010

 78

Permissions Bitmap

The Permissions Bitmap will have a 0 (not allowed) or a 1 (allowed) for each permission. There should
be a total of 8 sections, each section is separated by a pipe character ―|‖ for a total of 7 pipes (do not
add an additional ―|‖ at the end).

If a permissions value is left out, it is defaulted to 0 (not allowed). This means a PERMISSIONS of
―|||||||‖ that is sent defaults a cashier to no permissions. A table of permissions is located in
Chapter 5-- DevKit Constants under the section Cashier Permissions Constants.

EXAMPLE:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<CASHIER_NAME>System</CASHIER_NAME>

<PASSWORD>Test123%</PASSWORD>

<ADD_CASHIER_1>

CASHIER_NAME Eric

PASSWORD P@ssw0rd

PERMISSIONS 11110|000|111|100|101111000011|1100|001111|01

</ADD_CASHIER_1>

<ADD_CASHIER_2>

CASHIER_NAME System

PASSWORD P@ssw0rd

PERMISSIONS 11110|000|111|100|001111000011|1100|001111|01

</ADD_CASHIER_2>

<ADD_CASHIER_3>

CASHIER_NAME Phil

PASSWORD P@ssw0rd

PERMISSIONS 11110|000|111|100|001111000011|1100001111|01

</ADD_CASHIER_3>

<ADD_CASHIER_4>

CASHIER_NAME Beatrice

PASSWORD P@ssw0rd

PERMISSIONS 11110|000|111|100|001111000011|1100|001111|01

</ADD_CASHIER_4>

<ADD_CASHIER_5>

CASHIER_NAME YourMother

PASSWORD Passw0rd

PERMISSIONS 11110|000|111|100|001111000011|1100|001111|01

</ADD_CASHIER_5>

<COMMAND>ZU</COMMAND>

</XML_REQUEST>

This example should come back with a response of ―03451‖.

0 = Successful – ADD_CASHIER_1 was successfully added.

3 = Invalid Username – ADD_CASHIER_2 ‗System‘ is an invalid username.

4 = Invalid Permissions - ADD_CASHIER_3 had invalid or incorrectly formatted permissions.

5 = Illegal Permissions - ADD_CASHIER_4 was unsuccessful due to permissions conflict.

1 = Password is not Strong - ADD_CASHIER_5 failed, the password did not meet strong requirements.

NOTE: The response will come back in the auth field. It will either be ―Success‖ if all 5 cashiers are
successfully added, or it will be a five-digit number. Each digit corresponds to the corresponding
cashier. It is theoretically possible to have a successful NOT CAPTURED. This can occur if some of the
cashiers are successfully setup and some aren‘t. Therefore, the integrator should pay close attention

PCCharge Version 5.9.0
Updated 2/8/2010

 79

to the response. If, however, the ―unsuccessful‖ cashiers are just ones that aren‘t sent in, then the
transaction will still be CAPTURED.

Example: Two cashiers are sent in (and they are successful) a response of ―00999‖ will come

back. This will be CAPTURED. The three ―9‖s at the end signify that nothing was sent
in this case.

Example: Three cashiers are sent in, and the third one was an attempt to set up System, then

the response would be ―00399‖. This would be NOT CAPTURED. This would tell the
integrator that at least one of the sent in cashiers was unsuccessful.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Cashier Transaction Response Description

0 SUCCESSFUL

1 Password is not Strong

2 Password is Previous

3 Invalid Username (SYSTEM was passed in)

4 Invalid Permissions (Less than 7 pipes in the map)

5 Illegal Permissions (Debit Voids cannot be setup without Debit Transactions for example)

9 No Cashier Sent (Cashier Name was empty.)

Add Cashier Example

Example of “Add Cashier” Request:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESP_TYPE>3</RESP_TYPE>

<COMMAND>ZU</COMMAND>

<CASHIER_NAME>System</CASHIER_NAME>

<PASSWORD>System123%</PASSWORD>

<ADD_CASHIER_1>CASHIER_NAME CreditR PASSWORD CreditR123% PERMISSIONS

10000|000|000|000|000000000000|0000|000000|00</ADD_CASHIER_1>

<ADD_CASHIER_2>CASHIER_NAME CreditV PASSWORD CreditV123% PERMISSIONS

01000|000|000|000|000000000000|0000|000000|00</ADD_CASHIER_2>

<ADD_CASHIER_3>CASHIER_NAME CreditB PASSWORD CreditB123% PERMISSIONS

00100|000|000|000|000000000000|0000|000000|00</ADD_CASHIER_3>

<ADD_CASHIER_4>CASHIER_NAME CreditX PASSWORD CreditX123% PERMISSIONS

00010|000|000|000|000000000000|0000|000000|00</ADD_CASHIER_4>

<ADD_CASHIER_5>CASHIER_NAME CreditI PASSWORD CreditI123% PERMISSIONS

00001|000|000|000|000000000000|0000|000000|00</ADD_CASHIER_5>

</XML_REQUEST>

Example of “Add Cashier” Response:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>PROCESSED</RESULT>

<AUTH_CODE>Success</AUTH_CODE>

<INTRN_SEQ_NUM>1892</INTRN_SEQ_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 80

Change Cashier Permissions (ZU)

The ZU (Add) command is also used to change an existing cashier‘s permissions. You would submit the
same XML tags as you would for an actual Add Cashier, but can omit the PASSWORD Name Value Pair in
the request.

Just like with regular Add Cashier, you can change the permissions of up to 5 cashiers at a time. It
follows all the same conventions.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>ZU</COMMAND>

<CASHIER_NAME>System</CASHIER_NAME>

<PASSWORD>P@ssw0rd1</PASSWORD>

<ADD_CASHIER_1>CASHIER_NAME EricH PERMISSIONS

11110|111||||||</ADD_CASHIER_1>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>09999</AUTH_CODE>

<INTRN_SEQ_NUM>13079</INTRN_SEQ_NUM>

</XML_REQUEST>

Change Password – Forgotten Password (ZU)

The ZU command can also be used to reset a cashier‘s password in situations where the cashier has
forgotten the original password. The entire set of Name Value Pairs must be sent with the request just
as if this was adding a new cashier. The integrator will have to know the PERMISSIONS bitmap for that
particular cashier – if they send seven pipes (||||||), it will reset the permissions of that cashier to
base permissions (only credit card sales/preauths allowed).

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Note: This command should only be used if the cashier has forgotten their original password. If
they know their original password, a ZP command should be used to change their password.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>ZU</COMMAND>

<CASHIER_NAME>System</CASHIER_NAME>

<PASSWORD>Test123$</PASSWORD>

<ADD_CASHIER_1>CASHIER_NAME EricH PASSWORD Test123% PERMISSIONS

|||||||</ADD_CASHIER_1>

</XML_REQUEST>

OUX:

<XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 81

<USER_ID>User1</USER_ID>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>09999</AUTH_CODE>

<INTRN_SEQ_NUM>13136</INTRN_SEQ_NUM>

</XML_REQUEST>

Change cashier password – ZP Command

Example of “Change Cashier password” Request:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>ZP</COMMAND>

 <CASHIER_NAME>CreditR</CASHIER_NAME>

<PASSWORD>CreditR123%</PASSWORD>

<NEW_CASHIER_PASSWORD>CreditR789%</NEW_CASHIER_PASSWORD>

<NEW_CASHIER_CONFIRM_PASSWORD>CreditR789%

</NEW_CASHIER_CONFIRM_PASSWORD>

</XML_REQUEST>

Example of “Change Cashier password” Response:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>PROCESSED</RESULT>

<AUTH_CODE>Success</AUTH_CODE>

<INTRN_SEQ_NUM>1882</INTRN_SEQ_NUM>

</XML_REQUEST>

Delete cashier – ZD Command

Example of “Delete Cashier” Request:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

 <COMMAND>ZD</COMMAND>

<CASHIER_NAME>System</CASHIER_NAME>

<PASSWORD>System123%</PASSWORD>

<TARGET_CASHIER_NAME>CreditR</TARGET_CASHIER_NAME>

</XML_REQUEST>

Example of “Delete Cashier” Response:

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>PROCESSED</RESULT>

 <AUTH_CODE>Cashier deleted</AUTH_CODE>

 <INTRN_SEQ_NUM>1897</INTRN_SEQ_NUM>

</XML_REQUEST>

Re-enable cashier – ZR Command

Example of “Re-enable Cashier” Request:

<XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 82

 <USER_ID>User1</USER_ID>

 <COMMAND>ZR</COMMAND>

 <CASHIER_NAME>System</CASHIER_NAME>

 <PASSWORD>System123%</PASSWORD>

 <TARGET_CASHIER_NAME>CREDITR</TARGET_CASHIER_NAME>

</XML_REQUEST>

Example of “Re-enable Cashier” Response:

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>PROCESSED</RESULT>

 <AUTH_CODE>Cashier Reenabled</AUTH_CODE>

 <INTRN_SEQ_NUM>1937</INTRN_SEQ_NUM>

</XML_REQUEST>

Get Password Expiration Date – ZZ Command

Example of Get Expiration Request:

This command will allow an integrator to pass in just the cashier credentials and get back when the
cashier‘s password will expire. The OUX will return a ―Processed‖ response. The password expiration

date will be returned in the <PWD_EXPIRY> tag.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

INX:

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>ZZ</COMMAND>

 <CASHIER_NAME>Shelly</CASHIER_NAME>

 <PASSWORD>Test123%</PASSWORD>

 </XML_REQUEST>

OUX:

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>PROCESSED</RESULT>

 <PWD_EXPIRY >MMDDYY</ PWD_EXPIRY >

 </XML_REQUEST>

Log out Cashier - ZL Command

The ZL command is used behind the scenes by Client to log out the logged in cashier on the server
application. This command is triggered if a cashier attempts to process unsuccessfully in Client
(possible hack attempt). It is possible for this same cashier id to be logged into the server application.
Therefore, when a cashier lockout occurs in Client, the ZL command is sent to the server to log out
whoever is logged in. This is a fraud protection. This forces ‗System‖ to log in and re-enable that
cashier id. An integrator can submit this command to log out the cashier if they suspect tampering as
well.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>ZL</COMMAND>

PCCharge Version 5.9.0
Updated 2/8/2010

 83

</XML_REQUEST>

If no one is currently logged into PCCharge, the integrator will receive the following response.

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>PROCESSED</RESULT>

<AUTH_CODE>Nobody Logged In</AUTH_CODE>

<INTRN_SEQ_NUM>13087</INTRN_SEQ_NUM>

</XML_REQUEST>

Successful logout returns the following response.

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>PROCESSED</RESULT>

<AUTH_CODE>Logged Out</AUTH_CODE>

<INTRN_SEQ_NUM>13089</INTRN_SEQ_NUM>

</XML_REQUEST>

Running transactions with cashier credentials

PCCharge will support sending cashier credentials with the transaction data as well as not sending
these credentials (for backwards compatibility). If the integrator chooses to send the cashier
credentials, these credentials must be for valid cashier/password combinations.

Note: It should be stressed to integrators that in order to be PCI compliant to the PABP
Guidelines, they need to be setting up cashiers and sending cashier credentials with their
transaction requests.

Sample of Incorrect Password being sent:

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<CASHIER_NAME>EricH</CASHIER_NAME>

<PASSWORD>P@ssw0rd1</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000001005</MERCH_NUM>

<ACCT_NUM>5439750001500347</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>1.00</TRANS_AMOUNT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>13074</TROUTD>

<RESULT>Error</RESULT>

<AUTH_CODE>Invalid Login Info</AUTH_CODE>

<REFERENCE>Invalid Password</REFERENCE>

<INTRN_SEQ_NUM>13074</INTRN_SEQ_NUM>

PCCharge Version 5.9.0
Updated 2/8/2010

 84

</XML_REQUEST>

Sample of Invalid Cashier Name being sent:

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<CASHIER_NAME>BettyJ</CASHIER_NAME>

<PASSWORD>P@ssw0rd1</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000001005</MERCH_NUM>

<ACCT_NUM>5439750001500347</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>1.00</TRANS_AMOUNT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>13075</TROUTD>

<RESULT>Error</RESULT>

<AUTH_CODE>Invalid Login Info</AUTH_CODE>

<REFERENCE>CashierID Not Found</REFERENCE>

<INTRN_SEQ_NUM>13075</INTRN_SEQ_NUM>

</XML_REQUEST>

Note: Unlike the UI, there is no cashier locking in the event of incorrect credential submission with a
transaction sent through integration. The integrator will continue to receive the ―Invalid Password‖
response until such time as they submit the correct credentials for that cashier.

Example of successful transaction sent with cashier credentials.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<CASHIER_NAME>Shelly</CASHIER_NAME>

<PASSWORD>Test123$</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000001005</MERCH_NUM>

<ACCT_NUM>5439750001500347</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>1.00</TRANS_AMOUNT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>13090</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>TAS756</AUTH_CODE>

<REFERENCE>813021502892</REFERENCE>

<AVS_CODE>0</AVS_CODE>

PCCharge Version 5.9.0
Updated 2/8/2010

 85

<TRANS_DATE>050908</TRANS_DATE>

<INTRN_SEQ_NUM>13090</INTRN_SEQ_NUM>

<TRANS_ID>0000123456789</TRANS_ID>

<TICODE>CK</TICODE>

<MSI>A</MSI>

<PEM>5</PEM>

<TIM>170652</TIM>

<ACI>A</ACI>

<PROC_RESP_CODE>00</PROC_RESP_CODE>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CMRCL_FLAG>N</CMRCL_FLAG>

<CARD_ID_CODE>M</CARD_ID_CODE>

 <ACCT_DATA_SRC>T</ACCT_DATA_SRC>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 86

Follow On Transactions

Overview

When integrating to PCCharge, developers must make a decision on whether or not to support ―follow
on‖ transactions in their application. While a few integrators decide to support only basic transactions
such as Sales or Pre-Authorizations in their application, most integrators choose to support the majority
of available follow on transactions, such as Voids, Post-Authorizations, and Gratuities. PCCharge
requires that follow on transaction requests include the TroutD (Transaction ROUTing ID) from the
original Sale or Pre-Authorization when they are submitted. The TroutD is a PCCharge-assigned unique
number associated with a single transaction--or, in the case of follow on transactions, a TroutD can be
associated with an interrelated series of transactions.

For simplicity, PCCharge usually requires that only the TroutD of the original Sale or Pre-Authorization
transaction and the action code be set in order to perform follow on transactions. The TroutD enables
PCCharge to pull all needed information (merchant number, card number, expiration date, auth code,
etc.) from the transaction record in the PCCharge database in order to submit the follow on
transaction.

In some cases, additional values may be sent with the follow on transaction. For example, if
performing a Post-Authorization for a different amount than the original Pre-Authorization, the
different amount may be sent in with the Post-Authorization.

Note: Support for TroutD ―follow on‖ transactions was added starting with PCCharge version 5.6.
Follow on transaction support is available in all integration methods.

PCCharge Version 5.9.0
Updated 2/8/2010

 87

Examples

The following examples show common uses for follow on transactions:

File Method / TCP Interface Examples:

This example demonstrates performing a Void on a Sale using the File Method or TCP Interface. Refer
to the section File Method (see page 478) for more information on the File Method or TCP Interface
API.

1. A Sale transaction is processed and PCCharge assigns a unique TroutD number (1024) to it.

Request:
<XML_FILE>

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>1</COMMAND>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>5424180279791765</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>0</MANUAL_FLAG>

 <TRANS_AMOUNT>10.00</TRANS_AMOUNT>

 </XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <TROUTD>1024</TROUTD>

 <RESULT>CAPTURED</RESULT>

 <AUTH_CODE>124954</AUTH_CODE>

 <TRANS_DATE>1231</TRANS_DATE>

 <INTRN_SEQ_NUM>1024</INTRN_SEQ_NUM>

 <TRANS_ID>0412MCC364698</TRANS_ID>

 <RET>A014</RET>

 <ACI>P</ACI>

 </XML_REQUEST>

</XML_FILE>

PCCharge Version 5.9.0
Updated 2/8/2010

 88

2. Later, a second Sale transaction is processed and PCCharge assigns a unique TroutD number
(1025) to it.

Request:
<XML_FILE>

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>1</COMMAND>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>5424180279791765</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>0</MANUAL_FLAG>

 <TRANS_AMOUNT>11.00</TRANS_AMOUNT>

 </XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <TROUTD>1025</TROUTD>

 <RESULT>CAPTURED</RESULT>

 <AUTH_CODE>124956</AUTH_CODE>

 <TRANS_DATE>1231</TRANS_DATE>

 <INTRN_SEQ_NUM>1025</INTRN_SEQ_NUM>

 <TRANS_ID>0412MCC729964</TRANS_ID>

 <RET>A014</RET>

 <ACI>P</ACI>

 </XML_REQUEST>

</XML_FILE>

3. The merchant decides to process a Void transaction on the first Sale transaction. To Void the

transaction, the integrated application sends the action code for a Void transaction (action
code 3) and the TroutD number of the transaction to be voided (1024, in this example).

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>3</COMMAND>

 <TROUTD>1024</TROUTD>

 </XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <TROUTD>1024</TROUTD>

 <RESULT>VOIDED</RESULT>

 <INTRN_SEQ_NUM>1026</INTRN_SEQ_NUM>

 <PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

 </XML_REQUEST>

</XML_FILE>

4. PCCharge does not need any additional information to process the Void. Of course, if a follow
on transaction will be performed that modifies some aspect of the original transaction (such as
a Post-Authorization whose amount is less than the original Pre-Authorization), that
information would need to be sent to PCCharge in addition to the action code and TroutD.

PCCharge Version 5.9.0
Updated 2/8/2010

 89

PCCharge Version 5.9.0
Updated 2/8/2010

 90

File Method / TCP Interface Restaurant Example:

Assume the merchant above is operating in a restaurant environment. This merchant still has one
transaction left in the batch. Now, the merchant wishes to modify the second Sale transaction by
adding a gratuity to it. (Note: The processor used must support restaurant transactions in order to add
gratuities)

1. To add the gratuity to the second transaction, the application sends the action code for a
Gratuity transaction (action code 13), the TroutD of the Sale transaction (1025, in this

example), and the gratuity amount in the <GRATUITY_AMNT> tag ($2.51, in this example).

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>13</COMMAND>

 <TROUTD>1025</TROUTD>

 <GRATUITY_AMNT>2.51</GRATUITY_AMNT>

 </XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <TROUTD>1025</TROUTD>

 <RESULT>GRATUITY ADDED</RESULT>

 <AVS_CODE>0</AVS_CODE>

 <INTRN_SEQ_NUM>1027</INTRN_SEQ_NUM>

 <ACI>N</ACI>

 <CMRCL_TYPE>0</CMRCL_TYPE>

 <PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

 <CARD_ID_CODE>N</CARD_ID_CODE>

 <ACCT_DATA_SRC>T</ACCT_DATA_SRC>

 </XML_REQUEST>

</XML_FILE>

2. If, prior to settlement, the merchant wishes to adjust the gratuity amount of this transaction

for some reason, the same information (Action code 13, TroutD 1025) for the transaction can
be sent in with the new gratuity amount ($3.51, in this example).

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>13</COMMAND>

 <TROUTD>1025</TROUTD>

 <GRATUITY_AMNT>3.51</GRATUITY_AMNT>

 </XML_REQUEST>

</XML_FILE>

The gratuity amount has been adjusted.

PCCharge Version 5.9.0
Updated 2/8/2010

 91

Implementing Follow On Transactions

In order to allow an integrated application to process follow on transactions effectively, it is
recommended that the application:

1) Store the TroutD value
2) Store the status of the transaction:

a. Whether it has been voided
b. Whether it has been post-authorized
c. Whether the gratuity has been added
d. Whether it has been settled (and is not eligible for further follow on transactions)

The TroutD for each transaction can be retrieved either from the <TroutD> tag of the response (in the

File or TCP Methods) or by using the GetTroutD method (available in the OCX, DLL, or OLE/COM

methods).

Once this information is available to the application, lists or menu options should be provided by the
application that allow merchants to perform follow on transactions easily.

Alternatively, the merchant can be instructed to view the PCCharge detail reports to acquire TroutD
values and manually enter them in a screen provided by the application or even into the PCCharge GUI.

The following is a list of credit card transactions that can be processed using TroutD follow on support:

Credit Card Transactions:

 Void Sale

 Post-Authorization (amount is optional)

 Void Credit

 Void Post-Authorization

 Procurement Card Post-Authorization (amount is optional, tax and customer code should be
passed for lowest rates). Note: Global East (NDC), terminal based, requires the customer code
be all upper case.

 Gratuity (gratuity amount is required)

 Void Book

PCCharge Version 5.9.0
Updated 2/8/2010

 92

Non-TroutD Post-Authorizations

Post-Authorizations

In some cases, non-TroutD Post-Authorizations may need to occur. Specifically, if the merchant has
called the processor‘s voice authorization center to receive an authorization code, the merchant will
need to be able to manually enter the entire transaction as a Post-Authorization (action code 5). In
this case, all fields that would typically be used for a standard Sale or Pre-Authorization should be
entered plus the authorization code that the merchant received from the voice operator. Once this
transaction is submitted to PCCharge, the transaction will be placed into the open batch.

Note: Voice-Authorizations will not qualify for the most favorable rates. The processor‘s Voice-
Authorization system should be used only when absolutely necessary.

The following is an example of a Post-Authorization used to add a Voice-Authorization to the open
batch:

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>5</COMMAND>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>5424180279791765</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>0</MANUAL_FLAG>

 <TRANS_AMOUNT>6.00</TRANS_AMOUNT>

 <REFERENCE>123456</REFERENCE>

 <TICKET_NUM>999999999</TICKET_NUM>

 <CARDHOLDER>VERIFONE TEST 1</CARDHOLDER>

 <TOTAL_AUTH>6.00</TOTAL_AUTH>

 <AUTH_CODE>123456</AUTH_CODE>

 </XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <TROUTD>1078</TROUTD>

 <RESULT>PROCESSED</RESULT>

 <AUTH_CODE>123456</AUTH_CODE>

 <TICKET>999999999</TICKET>

 <INTRN_SEQ_NUM>1078</INTRN_SEQ_NUM>

 <CMRCL_TYPE>0</CMRCL_TYPE>

 <PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

 <AUTH_SRC_CODE>E</AUTH_SRC_CODE>

 <CARD_ID_CODE>N</CARD_ID_CODE>

 <ACCT_DATA_SRC>@</ACCT_DATA_SRC>

 </XML_REQUEST>

</XML_FILE>

Notice that the AVS data (the street and zip code) and Card Verification data (CVC2) were omitted in
this Post-Authorization. It is not necessary to pass this information because the transaction has already
been authorized.

PCCharge Version 5.9.0
Updated 2/8/2010

 93

Note: If a post-authorization is sent with a TroutD and an authorization code, PCCharge will reject the
transaction with an error of "Invalid TroutD or Auth Code". The format above for a voice-authorization
must be followed if an authorization code is sent.
Note: When using the processor National Bankcard Services (NBS), Voice-Authorizations are not
supported for Fuelman or Fleet One cards, an error will be returned. The transaction should be
submitted as a standard Post-Authorization.

Stored Voice-Authorizations

Another type of Non-TroutD Post-Authorization is a ―Stored Voice-Authorization‖. This type of
transaction is similar to a Post-Authorization except that a stored Voice-Authorization is not added to
the open batch. Instead, it essentially becomes a Pre-Authorization. A second transaction, a TroutD
Post-Authorization, must be submitted to add the Stored Voice-Authorization to the batch. A Stored
Voice-Authorization would be useful in a MOTO environment if an authorization was received from a
voice operator the day a product was ordered, and product was not scheduled to ship until a few days
later. The Stored Voice-Authorization would be processed the day the product was ordered, and the
TroutD Post-Authorization would be processed the day that the product shipped. To submit a stored

Voice-Authorization, use action code 5, and set the Store or TRANS_STORE flag. The following is an

example of a Stored Voice-Authorization:

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>5</COMMAND>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>5424180279791765</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>0</MANUAL_FLAG>

 <TRANS_AMOUNT>7.00</TRANS_AMOUNT>

 <REFERENCE>987654</REFERENCE>

 <TICKET_NUM>123456789</TICKET_NUM>

 <CARDHOLDER>VERIFONE TEST 1</CARDHOLDER>

 <TOTAL_AUTH>7.00</TOTAL_AUTH>

 <TRANS_STORE>1</TRANS_STORE>

 <AUTH_CODE>987654</AUTH_CODE>

 </XML_REQUEST>

</XML_FILE>

Note: Only some processors support stored Voice-Authorizations. If the processor does not support
stored Voice-Authorizations, an error will be returned. The transaction should be submitted as a
standard Post-Authorization.

PCCharge Version 5.9.0
Updated 2/8/2010

 94

Commercial Card Transactions

Overview

A Commercial Card transaction is defined as any credit card transaction that requires the customer
code and the tax amount of the transaction to be submitted. This information, commonly known as
―Level II‖ data, is submitted for the customer‘s records and is required for the merchant to qualify for
the lowest transaction rates. In general, if a customer is using one of the following types of credit
cards, Level II data must be submitted:

 Commercial Cards

 Government Cards

 Purchasing Cards

 Procurement Cards

 Fleet Cards

If the end-user of an integrated application will accept Commercial Cards, the integrated application
must be able to support the action codes and Level II data required to process Commercial Card
transactions. Treating a Commercial Card transaction as a standard credit card transaction will cause
the transaction to downgrade, thus increasing the fees the merchant must pay.

Note: Some processors do not support Level II data. A list of processors and what features they support
can be found on VeriFone, Inc.‘s website (http://www.verifone.com/). Click ―Developers‖ and then
―PCCharge Certified Processors‖ to view the list. The column labeled ―P-Card II‖ indicates which
processors support Level II data.

Supporting Commercial Card Transactions

The key to supporting Commercial Card transactions is the ability to identify a Commercial Card and
then prompt for the Level II data. The first six digits of each credit card account number is called the
Bank Identification Number (BIN) and the next three digits determine the card type. These first nine
digits of credit card account numbers allow merchants to identify what type of credit card is being
used. A database that includes valid Commercial Card BIN ranges is installed with each of copy of

PCCharge. This database is named Bin.mdb and is installed automatically in the PCCharge directory.
If the first nine digits of the credit card being submitted is within one of the ranges included in

Bin.mdb, the integrated application should then prompt for Level II data.

Using Bin.mdb

OCX or DLL Method

If using the OCX or DLL Methods of integration, the Charge.OCX and the PSCharge.dll Charge class

provide two methods that can be used to access the Commercial Card information contained in the

Bin.mdb database.

The first method, CommercialCardType, is used to determine if a credit card is a commercial card.

To use this method, set the Path variable, and then pass the credit card number as a parameter to the

method. The method will return TRUE if the card is a Commercial Card, FALSE if it is not. For
example:

http://www.verifone.com/

PCCharge Version 5.9.0
Updated 2/8/2010

 95

If .CommercialCardType(“Account Number”) Then

 „Prompt for Level II data

Else

 „Do not Prompt for Level II data

End If

The second method, GetCommercialCardType, is used to determine the Commercial Card type. To

use this method, set the Path variable, and then pass the credit card number as a parameter to the

method. This method will return a character that indicates the Commercial Card Type. For example:

CommercialCardTypeChar = .getCommercialCardType(“Account Number”)

OLE/COM Method

If using the OLE/COM Method of integration, the PccBin class provides two functions that can be used

to determine if a credit card is a commercial card and what type of commercial card it is.

The first function, CommercialCard, is a Boolean function that is used to determine if a credit card is
a commercial card. To use this function, pass the credit card number as a parameter. This function

will return TRUE if the card is a Commercial Card, FALSE if it is not. For example:

If .CommercialCard(“Account Number”) then

 „Prompt for Level II data

Else

 „Do not Prompt for Level II data

End If

The second function, CommercialCardType, is used to determine the Commercial Card type. The

function does not require any parameters and must called after the CommercialCard function has
been used. This function returns the commercial card type for the credit card number that was

submitted via the CommercialCard function. This function will return a character that indicates the
Commercial Card Type. For example:

CommercialCardTypeChar = .CommercialCardType

File Method or TCP Interface

If using the File Method or TCP Interface, integrated applications must access the Bin.mdb database

directly. The following code sample is a Visual Basic 6 function that checks if a credit card account

number falls into one of the Commercial Card BIN ranges in the Bin.mdb database.

Note: This code sample assumes that a reference to the "Microsoft DAO 2.5/3.51 Compatibility Library"
has been set in the project.

Public Function CommercialCard (CreditCard As String) As Boolean

„Returns true if the credit card account number‟s BIN falls within a

„valid commercial card BIN range, else, returns false.

 Dim dbBin As Database

 Dim rsRange As Recordset

 Dim CCBIN, strQuery As String

PCCharge Version 5.9.0
Updated 2/8/2010

 96

 CCBIN = Left(CreditCard, 9) „The Credit Card BIN is the first 9

„digits of the account number

 Set dbBin = OpenDatabase(“C:\Program Files\Pccw\Bin.mdb")

 strQuery = "SELECT * FROM BIN WHERE LowRange <= " & CCBIN & _

 " AND HighRange >= " & CCBIN

 Set rsRange = dbBin.OpenRecordset(strQuery)

 If Not rsRange.EOF Then

 „if the account number BIN was found in the database, return True

 CommercialCard = True

 „Also, to determine the Commercial Card type, use the following

 „command to check the Type column: rsRange("Type").Value

 End If

End Function

Submitting Commercial Card Transactions

Once it has been determined that the credit card is a Commercial Card, the integrated application
should perform the following steps:

1. Prompt for Level II data from the end-user and/or customer.

2. Create the Commercial Card transaction request. Pass the following values in the transaction

request (refer to CHAPTER 6 -- PCCharge Integration Methods (see page 155) for information
on the properties or tags that are used to pass the data):

a. The request should contain all of the standard credit card Sale, Credit, or Post-
Authorization values (card number, expiration date, amount, etc.)

b. The request should contain Level II data (customer code and tax amount). The request
should also indicate if the purchase is tax exempt (if applicable). The request should
also include the Destination Zip Code if processing an American Express card and using
American Express as your processor or via split dial. Note: Global East (NDC), terminal
based, requires the customer code be all upper case.

c. The request should contain the Commercial Card Flag character. (This is the character
returned by the various methods above and is the character that appears in the Type

column of the Bin.mdb database)

d. Make certain that the request uses the proper Commercial Card action code. Valid
Commercial Card codes are 8, 9, and 10. See the section DevKit Constants section
(see page 141) for more information

3. Submit the transaction to PCCharge.

PCCharge Version 5.9.0
Updated 2/8/2010

 97

Example

The following is an example of a Commercial Card Sale using the File Method or TCP Interface.

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>8</COMMAND>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>4055011111111111</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>1</MANUAL_FLAG>

 <TRANS_AMOUNT>5.30</TRANS_AMOUNT>

 <TRACK_DATA>4055011111111111=08121011000001234567</TRACK_DATA>

 <CUSTOMER_CODE>02</CUSTOMER_CODE>

 <TAX_AMOUNT>0.30</TAX_AMOUNT>

 <TICKET_NUM>123456789</TICKET_NUM>

 <CARDHOLDER>John Doe</CARDHOLDER>

 <CMRCL_FLAG>P</CMRCL_FLAG>

 <TAX_EXEMPT>0</TAX_EXEMPT>

 </XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>1138</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>TSYS 4</AUTH_CODE>

<REFERENCE>411921002550</REFERENCE>

<AVS_CODE>0</AVS_CODE>

<TRANS_DATE>042804</TRANS_DATE>

<TICKET>123456789</TICKET>

<INTRN_SEQ_NUM>1138</INTRN_SEQ_NUM>

<TRANS_ID>000000000009548</TRANS_ID>

<MSI>E</MSI>

<PEM>5</PEM>

<TIM>173952</TIM>

<ACI>E</ACI>

<PROC_RESP_CODE>00</PROC_RESP_CODE>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>@</CARD_ID_CODE>

<ACCT_DATA_SRC>D</ACCT_DATA_SRC>

</XML_REQUEST>

</XML_FILE>

PCCharge Version 5.9.0
Updated 2/8/2010

 98

Flexible Spending Accounts (FSA/HRA)
Transactions

Overview

 FSA - Flexible Spending Account
 HRA - Health Reimbursement Arrangement
 IIAS - Inventory Information Approval System

 FSA/HRA transactions are now supported with PCCharge
Payment Server and PCCharge Pro version 5.8.1.

An IIAS program is an inventory control system that helps to categorize saleable items. FSA/HRA deals
with the healthcare-related categories. With this system in place, the merchant will know based on an
item‘s SKU number whether or not it is FSA/HRA eligible. When a customer purchases items, the IIAS
system will automatically flag the healthcare-related items so that the customer can purchase using an
FSA/HRA card.

Note: PCharge has nothing to do with IIAS. PCCharge assumes that there is an IIAS system in place
and that the merchant will input the proper amounts for the various healthcare categories.

Processors That Support FSA/HRA transactions.

Processor PCCharge Availablity (In Version) Partial Auth Supported

Alliance Data (ADSI) Future Release N/A

TANDEM BAMS (NPC) 5.8.1 Yes

Echo (ECHO) Future Release N/A

Elavon (NOVA) 5.8.1 Yes

Fifth Third St. Pete (BPS) Host 5.8.1 Yes

Fifth Third St. Pete (BPS) Terminal 5.8.1 N/A

First Data Atlanta/ Buypass (BPAS) 5.8.2 Yes

First Data Omaha (FDC) Future Release N/A

First Data South (NB) Future Release N/A

Global Payments East (NDC) Future Release N/A

Heartland Payments (HPTS) 5.8.1 Yes

First Data New Nashville (FDNN) 5.8.2 Yes

First Data North (CES) 5.8.1 Yes

First Data Nashville (FDCN) Future Release N/A

National Bankcard (NBS) Future Release N/A

Paymentech Tampa (GSAR) 5.8.1 Yes

RBS WorldPay (LYNK) 5.8.2 Yes

TSYS Acquiring (VISA) 5.8.1 Yes

Multi-purpose FSA Cards

FSA/HRA cards can be loaded for the purchase of just healthcare-related items or they can be loaded
with other benefits as well (multi-purse).

PCCharge Version 5.9.0
Updated 2/8/2010

 99

 If the FSA/HRA card is not multi-purse, and the customer wants to purchase a combination of
healthcare and non-healthcare items, a Partial Approval situation will occur. The processing
platform will approve the healthcare amount, if available on the card, and the customer will
be asked to pay for the remainder of the bill with some other tender type.

 If the FSA/HRA card is a multi-purse, the customer can purchase whatever items they choose
using this card and a Partial Approval will only be triggered if there is not enough open to buy
on the card to satisfy the bill.

FSA/HRA cards are similar to Pre-Paid credit cards. The only difference is that the FSA value on the
card may only be used to for healthcare-related purchases. There are two ways to load money onto the
cards:

 Payroll Deduction

 The employer can load the value directly to the card.

Note: HRA cards can only be loaded by the employer as this is reimbursement for healthcare expense.

IRS Mandated Guidelines

According to IRS guidelines, merchants will be mandated to participate in the IIAS program in order to
accept FSA/HRA cards beginning in 2009 if they do not have a Drug Store or Pharmacy Merchant
Category Code (MCC/SIC). The current MCC/SICs affected are:

MCC Description

5411 Grocery Stores and Supermarkets

5310 Discount Stores

5300 Discount Goods – Wholesale Clubs

5499 Convenience Stores

5960

Online Pharmacies
5964

5965

5969

5912 Drug Stores and Pharmacies (effective 01/01/09)

5122 Drugist/Druggist Proprietaries (effective 01/01/09)

Other MCC/SICs not listed above can also be affected as long as they are non-healthcare related MCCs
which sell healthcare related items.

Split Tender

Due to the nature of the program, it will be possible for the cardholder to use an FSA/HRA card for a
partial payment for eligible items and then use a different tender type or card for the remainder of the
items that do not qualify as eligible. This partial payment can also occur if all items are eligible but
there is not enough available on the card to pay for the entire purchase.

Eligible Purchases

Eligible items currently include:

 Prescriptions (including over the counter medications)

 Vision care

 Clinical (doctor visits, labs, etc)

 Dental

PCCharge Version 5.9.0
Updated 2/8/2010

 100

Note: The list of eligible medical expenses is part of the Internal Revenue Code. The merchant is
responsible for the maintenance of all eligible SKUs so that when a purchase is made, the eligible items
can purchased using a FSA/HRA card.

Card Types Currently Supported

FSA/HRA cards currently are only Visa/MC. There are specific BIN ranges for these cards.

Note: FSA/HRA transactions are NOT supported for the Restaurant industry. Therefore, any FSA
settings/enablement will be greyed out in the setup for processing platforms that support both FSA and
Restaurant when Restaurant is the selected industry. For example, if you go to the TSYS Extended
Data fields and choose Retail, MOTO or Ecommerce as the industry, you can enable FSA/HRA. If you
choose Restaurant as the industry, the FSA enablement will be greyed out and unavailable.

FSA/HRA Examples

Successful FSA transaction.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<PROCESSOR_ID>NPC</PROCESSOR_ID>

<MERCH_NUM>000000000011</MERCH_NUM>

<ACCT_NUM>5439750001500347</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>5.00</TRANS_AMOUNT>

<FSA>1</FSA>

<AMOUNT_HEALTHCARE>5.00</AMOUNT_HEALTHCARE>

<AMOUNT_PRESCRIPTION>1.00</AMOUNT_PRESCRIPTION>

<AMOUNT_CLINIC>1.00</AMOUNT_CLINIC>

<AMOUNT_VISION>1.00</AMOUNT_VISION>

<AMOUNT_DENTAL>1.00</AMOUNT_DENTAL>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10540</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>TAS992</AUTH_CODE>

<REFERENCE>830120501440</REFERENCE>

<AVS_CODE>0</AVS_CODE>

<TRANS_DATE>102708</TRANS_DATE>

<INTRN_SEQ_NUM>10540</INTRN_SEQ_NUM>

<TRANS_ID>0000123456789</TRANS_ID>

<TICODE>CK</TICODE>

<MSI>A</MSI>

<RET>M</RET>

<PEM>5</PEM>

<TIM>155502</TIM>

<ACI>A</ACI>

<PROC_RESP_CODE>00</PROC_RESP_CODE>

PCCharge Version 5.9.0
Updated 2/8/2010

 101

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CMRCL_FLAG>N</CMRCL_FLAG>

<CARD_ID_CODE>M</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

</XML_REQUEST>

Failed FSA/HRA transaction.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<PROCESSOR_ID>NPC</PROCESSOR_ID>

<MERCH_NUM>000000000011</MERCH_NUM>

<ACCT_NUM>4387753333333333</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>5.00</TRANS_AMOUNT>

<FSA>1</FSA>

<AMOUNT_HEALTHCARE>4.00</AMOUNT_HEALTHCARE>

<AMOUNT_PRESCRIPTION>1.00</AMOUNT_PRESCRIPTION>

<AMOUNT_CLINIC>1.50</AMOUNT_CLINIC>

<AMOUNT_VISION>1.25</AMOUNT_VISION>

<AMOUNT_DENTAL>1.00</AMOUNT_DENTAL>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10495</TROUTD>

<RESULT>Error</RESULT>

<AUTH_CODE>Invalid Dollar Amount</AUTH_CODE>

<REFERENCE>Health Care Amount must be greater than Sub Amounts</REFERENCE>

<INTRN_SEQ_NUM>10495</INTRN_SEQ_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 102

Partial Approval of an FSA/HRA Transaction:

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<PROCESSOR_ID>NPC</PROCESSOR_ID>

<MERCH_NUM>000000000011</MERCH_NUM>

<ACCT_NUM>4387753333333333</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>5.00</TRANS_AMOUNT>

<FSA>1</FSA>

<AMOUNT_HEALTHCARE>4.00</AMOUNT_HEALTHCARE>

<AMOUNT_PRESCRIPTION>1.00</AMOUNT_PRESCRIPTION>

<AMOUNT_CLINIC>0.50</AMOUNT_CLINIC>

<AMOUNT_VISION>1.25</AMOUNT_VISION>

<AMOUNT_DENTAL>1.00</AMOUNT_DENTAL>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10496</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>TAS185</AUTH_CODE>

<REFERENCE>829814501105</REFERENCE>

<AVS_CODE>0</AVS_CODE>

<TRANS_DATE>102408</TRANS_DATE>

<INTRN_SEQ_NUM>10496</INTRN_SEQ_NUM>

<TRANS_ID>000000000894349</TRANS_ID>

<TICODE>CK</TICODE>

<MSI>N</MSI>

<RET>M</RET>

<PEM>5</PEM>

<TIM>104858</TIM>

<ACI>N</ACI>

<PROC_RESP_CODE>10</PROC_RESP_CODE>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>M</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<AMOUNT_DUE>1.00</AMOUNT_DUE>

<AUTH_AMOUNT>4.00</AUTH_AMOUNT>

</XML_REQUEST>

Note : Integrators will use either the AMOUNT_DUE or the

AUTH_AMOUNT tags to have the POS indicate the remaining purchase
amount to the end user.

Note : When total cost of the transaction is covered by the initial

purchase PCCharge will not return AMOUNT_DUE and AUTH_AMOUNT
tags.

PCCharge Version 5.9.0
Updated 2/8/2010

 103

Discretionary Data

This allows an integrator to submit transaction descriptions with certain transaction types and
processors. Once enabled, PCCharge will store the data and submit it to the processor during
settlement. This is typically enabled on the Extended Data setup screen within PCCharge.

Processors That Support Discretionary Data

Processor Transaction Type Tender Type

NBS Sale, Credit, Pre-Auth Credit

TANDEM BAMS (NPC)
Sale, Credit, Pre-Auth, Book, Voice-

Auth
Credit, Debit, EBT

Example transaction with Discretionary Data :

INX:

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>1</COMMAND>

 <PROCESSOR_ID>NPC</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>4387753333333333</ACCT_NUM>

<EXP_DATE>1212</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>2.00</TRANS_AMOUNT>

<ZIP_CODE>85284</ZIP_CODE>

<STREET>8320</STREET>

<TICKET_NUM>11</TICKET_NUM>

<CVV2>999</CVV2>

<PRESENT_FLAG>1</PRESENT_FLAG>

<PRODUCT_DETAIL_CODE_1>Line Item 1 - Test</PRODUCT_DETAIL_CODE_1>

 <PRODUCT_DETAIL_CODE_2>Line Item 2 - Test</PRODUCT_DETAIL_CODE_2>

 <PRODUCT_DETAIL_CODE_3>Line Item 3 - Test</PRODUCT_DETAIL_CODE_3>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>1176</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>TAS680</AUTH_CODE>

<REFERENCE>833116503763</REFERENCE>

<AVS_CODE>Y</AVS_CODE>

<TRANS_DATE>112608</TRANS_DATE>

<TICKET>11</TICKET>

<INTRN_SEQ_NUM>1176</INTRN_SEQ_NUM>

<TRANS_ID>000000000301523</TRANS_ID>

<TICODE>CK</TICODE>

<MSI>N</MSI>

<PEM>5</PEM>

<TIM>113023</TIM>

<ACI>N</ACI>

<PROC_RESP_CODE>00</PROC_RESP_CODE>

<CVV2_CODE>M</CVV2_CODE>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CMRCL_FLAG>N</CMRCL_FLAG>

<CARD_ID_CODE>M</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

PCCharge Version 5.9.0
Updated 2/8/2010

 104

</XML_REQUEST>

Restaurant Transactions

Overview

Integrating PCCharge into a restaurant point-of-sale system is similar to integrating PCCharge into any
other type of retail point-of-sale system. Once Restaurant is selected as the business type in the
processor's extended data fields, PCCharge will be able to send "restaurant certified" transactions to
the processor.

Note: Some processors do not support restaurant transactions. A list of processors and what features
they support can be found on VeriFone, Inc.‘s website (http://www.pccharge.com/). Click ―Support‖
and then ―PCCharge DevKit‖ and then ―PCCharge Certified Processing Companies‖ to view the list.
The column labeled ―Restaurant‖ indicates which processors support restaurant transactions.

Benefits of XML

Starting with PCCharge version 5.6.0, the PCCharge products were updated to support restaurant
integration using the XML message format. If an existing integration was written using the INP
message format, it is highly recommended that the integration be updated to use the XML message
format. Problems may occur with reports and when adding gratuities when using the INP message
format—these problems have been resolved with the XML message format. In addition, the XML
message format supports gratuity adjustments, the INP message format does not.

o The INP message format will eventually be phased out.

Note: The XML message format is available in all five integration methods. To activate the XML
message format when using the OCX, DLL, or OLE/COM methods of integration, use the parameter ―3‖

when calling the Send method. For example:

OCX / DLL: .Send 3

OLE/COM: .Send , 3

Integration

To properly send restaurant transactions from an integrated application to PCCharge, restaurant
transactions should basically be treated as standard retail transactions. In addition, include the
following information in restaurant transaction requests:

 Estimated gratuity – This amount may be sent with a Sale (action code 1) or a Pre-Authorization
(action code 4) transaction. The amount that PCCharge sends to the processor for authorization is
the sale amount + the estimated gratuity. Sending the estimated gratuity helps to assure that the
customer has enough available credit to leave a tip. The amount that is recorded for settlement
by PCCharge (or the processor, if Host based) is the sale amount only. Note: It is recommended to
check with the processor or merchant service provider for guidance on what amount to set this
value to. Incorrectly setting this value can result in downgrades.

 Gratuity – Sending the gratuity is the second step of a restaurant transaction. If the original
transaction was a Sale, send the gratuity amount in a gratuity transaction (action code 13). A

http://www.pccharge.com/

PCCharge Version 5.9.0
Updated 2/8/2010

 105

Gratuity transaction adds the actual gratuity to the amount recorded for settlement. If the
original transaction was a Pre-Authorization, a Post-Authorization (action code 5) should be used to
complete the Pre-Authorization. This completion records the sale amount plus the gratuity for
settlement. A Sale with Gratuity (action code 14) transaction authorizes and records the sale
amount plus gratuity in one step. A Gratuity transaction (action code 13) may also be used to
adjust an existing gratuity prior to settlement.

Server ID -- This value should be sent with all restaurant Sale (action code 1), Pre-Authorization
(action code 4), or Sale with Gratuity (action code 14) transactions. This two digit ID is stored in the
transaction record and is used in PCCharge‘s gratuity reports to determine the amount of Gratuity each
server has received. This value is required by some processors. To force entry of this value for each
transaction, the Require Server ID box should be checked in the processor's extended data fields in

PCCharge. Use the MCSN tag or property to pass the Server ID.
Processor specific note: The Server ID is required for AMEX card transactions. Also required when
using the processor NB and GSAR in restaurant business type.

Examples

The following are examples, using the File Method or TCP Interface, that show common transactions
used in a restaurant environment. For more information on the File Method of integration, refer to the
section File Method (see page 478).

Restaurant Sale

The following is an example of a restaurant sale for $6.00 with an estimated gratuity of $0.85. The
total amount that will be authorized is $6.85. However, only $6.00 will be added to the settlement
file. A gratuity transaction must be submitted later to finalize (add the actual gratuity amount to) this
transaction. Note about estimated gratuity: It is recommended to check with the processor or
merchant service provider for guidance on what amount to set this value to. Incorrectly setting this
value can result in downgrades.

Request:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<PROCESSOR_ID>GSAR</PROCESSOR_ID>

<MERCH_NUM>999999999999519</MERCH_NUM>

<ACCT_NUM>4012000033330026</ACCT_NUM>

<EXP_DATE>1211</EXP_DATE>

<MANUAL_FLAG>1</MANUAL_FLAG>

<TRANS_AMOUNT>6.00</TRANS_AMOUNT>

<TRACK_DATA>4012000033330026=08121011000001234567</TRACK_DATA>

<TICKET_NUM>9999</TICKET_NUM>

<CARDHOLDER>VERIFONE TEST 3</CARDHOLDER>

<MCSN>02</MCSN>

<PRESENT_FLAG>1</PRESENT_FLAG>

<GRATUITY_AMNT_EST>0.85</GRATUITY_AMNT_EST>

</XML_REQUEST>

</XML_FILE>

PCCharge Version 5.9.0
Updated 2/8/2010

 106

Response:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>1102</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>096899</AUTH_CODE>

<REFERENCE>00000000</REFERENCE>

<TRANS_DATE>0404</TRANS_DATE>

<TICKET>9999</TICKET>

<INTRN_SEQ_NUM>1102</INTRN_SEQ_NUM>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

</XML_REQUEST>

</XML_FILE>

Because the Sale transaction was successful, the Restaurant Point-of-Sale should store the TroutD value
(1102 for this transaction) to enable the server to add the gratuity.

PCCharge Version 5.9.0
Updated 2/8/2010

 107

Gratuity

The following is an example of a Gratuity Transaction used to finalize a sale. In this example, the
Gratuity transaction is finalizing the Restaurant sale from above. To finalize the Sale, pass the
Gratuity action code (13), the TroutD from the original Sale (1102 for this transaction), and the actual

Gratuity amount ($1.00 for this transaction). A Result of ―GRATUITY ADDED‖ indicates the gratuity
was successfully added to the Sale.

Request:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>13</COMMAND>

<TROUTD>1102</TROUTD>

<GRATUITY_AMNT>1.00</GRATUITY_AMNT>

</XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>1102</TROUTD>

<RESULT>GRATUITY ADDED</RESULT>

<TRANS_DATE>0404</TRANS_DATE>

<INTRN_SEQ_NUM>1103</INTRN_SEQ_NUM>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

</XML_REQUEST>

</XML_FILE>

Gratuity Adjustment

A gratuity adjustment is defined as a transaction that modifies a gratuity that has already been
processed. Typically, a gratuity adjustment would be used to correct order-entry errors. The syntax
for a gratuity adjustment is exactly the same as a gratuity. Simply pass in the Gratuity action code
(13), the TroutD from the original Sale (1102 for this transaction), and the new Gratuity amount ($2.00
for this transaction).

Request:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>13</COMMAND>

<TROUTD>1102</TROUTD>

<GRATUITY_AMNT>2.00</GRATUITY_AMNT>

</XML_REQUEST>

</XML_FILE>

Response:
<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>1102</TROUTD>

<RESULT>GRATUITY ADDED</RESULT>

<TRANS_DATE>0404</TRANS_DATE>

<INTRN_SEQ_NUM>1109</INTRN_SEQ_NUM>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 108

</XML_FILE>

Processor Specific Notes

The processors Global Payments East (NDC) and FDMS South (NB) have unique restrictions related to
gratuity based transactions.

These two processors will not allow the actual total sale plus gratuity amount to exceed 120% of the
originally authorized total sale plus gratuity amount.

Example:

1. The customer‘s bill is $10.00. The server estimates the gratuity will be $1.00 (10%). The

restaurant application will then submit a Sale transaction (action code 1) with the amount of
$10.00 and the estimated gratuity of $1.00. Therefore, PCCharge will request an authorization
for $11.00. This authorization is approved by the processor.

2. After the meal has concluded, the customer decides to leave a gratuity of $5.00 This gratuity

amount would result in a total amount of $15.00, which is greater than 120% of the originally
authorized total of $11.00. The merchant could not, in this situation, add the gratuity by
performing a Gratuity transaction.

3. Instead, the server will need to perform a Void Sale (action code 3) on the original transaction,

and then enter a Sale with Gratuity (action code 14) with the amount of $10.00 and a gratuity
amount of $5.00.

PCCharge Version 5.9.0
Updated 2/8/2010

 109

Gift Card Transactions

This section details the various action codes and transaction types that are applicable for each Gift
Card processor. Although several of the transaction types are similar among all Gift Card processors
(such as Balance or Redemption transactions), most Gift Card processors support very unique
transaction types. It is recommended that the developer review the various screens in the PCCharge
GUI to determine what values should be set for each transaction type. Also, many Gift Card processors
also recommend that developers contact them directly to discuss the usage and integration of their
services.

Note: VeriFone, Inc. does not provide test merchant accounts for any of the Gift Card processors.
Developers should contact the various Gift Card processors directly to request test merchant accounts.

Givex (GVEX)
18 – Balance

25 – Redemption

26 – Register

27 – Increment

28 – Activate

29 – Cancel

0Q – Adjustment (amount may be either positive or negative)

0N – Points

Valuetec (VTEC)
18 – Balance

25 – Redemption (Loyalty) / Sale (Non-Loyalty)

26 – Replace

27 – Purchase (Loyalty) / Add Value (Non-Loyalty)

28 – Activation

29 – Void

0A – Deactivate

0C – Current Day Totals

0D – Previous Day Totals

ValueLink (VLNK)
18 – Balance

28 – Activate

25 – Redemption

27 – Reload

29 – Void

0H – (Restaurant OR E-Commerce) with Simulate Pre-Auth Set up: Balance with Lock

0I – (Restaurant OR E-Commerce) with Simulate Pre-Auth Set up: Redemption Unlock

0P – Balance Merge

0Q – Balance Adjustment

0R – Balance Transfer

0S – Report Lost/Stolen

0T – Cash Out

PCCharge Version 5.9.0
Updated 2/8/2010

 110

Chase Paymentech (GSAR)
18 – Balance Inquiry

25 – Redemption & Prior Redemption

27 – Issuance/Add Value

29 – Void

0A – Deactivate

0E – Reactivate

World (WRLD)
18 – Balance

25 – Sale

27 – Add Value

28 – Activate

0N – Redeem Points

Fifth-Third Bank-St Pete (BPS)
18 – Balance

25 – Redemption

27 – Reload

28 – Activate

29 – Void

0A – Close

0B – Refund

0Q – Unload

0V – Pre-Auth

0I – Post-Auth

RBS WorldPay (LYNK)
18 – Balance

25 – Redemption

27 – Add Value

29 – Void Add value

E1 – Gift Settlement

Datamark Gift Card (DMRK)
18 – Balance Inquiry

25 – Redemption & Prior Redemption

27 – Issuance/Add Value

29 – Void

0A – Deactivate

0E – Reactivate

Smart Transaction Systems (SMTS)
18 – Balance Inquiry

25 – Redemption

27 – Add Value

PCCharge Version 5.9.0
Updated 2/8/2010

 111

28 – Activation

29 – Void

0B – Credit

0C – Totals Inquiry (Current only)

0N – Redeem Points

0R – Balance Transfer

0U – Add Tip

Secure Payment Systems (SPS)
18 – Balance Inquiry

25 – Redemption

27 – Add Value (non-Loyalty only)

28 – Activation

29 – Void

0B – Credit

0C – Totals Inquiry

0R – Balance Transfer

Stored Value Systems (SVSI)
18 – Balance Inquiry
25 – Redemption
27 – Issuance
28 – Activation
29 – Void
0B – Refund
0I – Post-Auth
0Q – Recharge
0T – Cash Out
0U – Tip
0V – Pre-Auth

TSYS Acquiring Solutions (VISA)
18 – Balance

25 – Redemption

27 – Reload

0B – Refund
0A – Deactivate (Only Supported for Fifth Third RIID)

0Q – Unload (Only Supported for Fifth Third RIID)

VeriFone Stored Value API (GAPI)

The VeriFone Stored Value API (GAPI) is a proprietary specification that allows for stored value card
processors to add themselves to PCCharge. Applications using GAPI can also integrate with PCCharge
using the various integration methods. For more information on adding a stored value card processor
to PCCharge, and how to obtain the VeriFone Stored Value API, please contact VeriFone sales at 1-800-
725-9264.

PCCharge Version 5.9.0
Updated 2/8/2010

 112

Pre-Paid Credit Card Transactions

Pre-paid credit cards are similar to regular credit cards, the only difference is that they carry a fixed
amount. PCCharge supports Visa, MasterCard, American Express and Discover pre-paid card. Pre-Paid
Credit Card processing was added in PCCharge version 5.7.1 release I sp6, but not made configurable
until PCCharge version 5.7.1 release I sp9a.

Action Codes:

P1 - Balance Inquiry

P2 - Partial Authorization Reversal

Regular Credit card action codes can be used.

P1: Used to determine the balance available in a pre-paid credit card.

P2: This transaction format is used to submit a POS generated ―Reversal‖ message for a previously
approved ―Partial Authorization‖ Credit Card transaction. This transaction type is only supported for
the Visa, MasterCard and Discover card types and will return ―SERV NOT ALLOWED‖ for any other
transaction.

This transaction type is not supported for any PIN Based Debit card transactions.

Note: Reversals are not available for American Express pre-paid credit cards.

Pre-Paid functionality was originally added in PCCharge version 5.7.1 release I sp6. This feature was
defaulted to ―on‖ and the setting could not be changed. The merchant was required to contact their
merchant account representative and opt-out of the program. Starting with PCCharge version 5.7.1
release I sp9a and now version 5.8, VeriFone has provided the merchant with a choice within the
PCCharge user interface.

When enabled: A merchant runs a Pre-Paid card and the amount being processed is greater than the
 amount on the card. The processor will send an approval message with the approved
 amount. PCCharge will then calculate the AMOUNT DUE and passes it to the integrator.

When disabled: A merchant runs a Pre-Paid card and the amount being processed is greater than the
 amount on the card. The processor will send a declined message. If the card is Pre-Paid
 and the amount being processed is less than the card has open to buy, The processor
 will approve the transaction as if it is a normal credit card.

Note: If ―Enable Pre-Paid Cards‖ is not checked, the merchant will not be able to run Credit or Debit
Balance Inquiries as this functionality is tied to the Partial Authorization functionality.

PCCharge Version 5.9.0
Updated 2/8/2010

 113

Note: ―Enable Pre-Paid Cards‖ option within PCCharge MUST be checked for this feature to work. The
option is located under Setup>Credit Card Company>Extended. This option is only configurable in
PCCharge version 5.7.1 release I sp9a and above.

PCCharge Version 5.9.0
Updated 2/8/2010

 114

Partial Authorization (Partial Auth)

In order for an integrator to process transactions where the initial form of payment does not cover the
entire authorization amount, the POS must be ready to accept an AMOUNT_DUE that is returned from
PCCharge. When this tag is present it indicates that an amount smaller than the original transaction
amount was authorized. The next step is for the POS to send a new transaction with the remaining
payment amount. As with Pre-Paid Transactions and FSA/HRA Partial Authorization may be an option
that can be turned on or off within PCCharge and is usually found on the Extended Data screen for
supporting processors.

Example of a Partial Auth Transaction:

INX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>1</COMMAND>

<PROCESSOR_ID>NPC</PROCESSOR_ID>

<MERCH_NUM>000000000011</MERCH_NUM>

<ACCT_NUM>4387753333333333</ACCT_NUM>

<EXP_DATE>1210</EXP_DATE>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>5.00</TRANS_AMOUNT>

</XML_REQUEST>

OUX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10496</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>TAS185</AUTH_CODE>

<REFERENCE>829814501105</REFERENCE>

<AVS_CODE>0</AVS_CODE>

<TRANS_DATE>102408</TRANS_DATE>

<INTRN_SEQ_NUM>10496</INTRN_SEQ_NUM>

<TRANS_ID>000000000894349</TRANS_ID>

<TICODE>CK</TICODE>

<MSI>N</MSI>

<RET>M</RET>

<PEM>5</PEM>

<TIM>104858</TIM>

<ACI>N</ACI>

<PROC_RESP_CODE>10</PROC_RESP_CODE>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>M</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<AMOUNT_DUE>1.00</AMOUNT_DUE>

<AUTH_AMOUNT>4.00</AUTH_AMOUNT>

</XML_REQUEST>

Note : Integrators will use either the AMOUNT_DUE or the

AUTH_AMOUNT tags to have the POS indicate the remaining purchase

amount to the end user.

Note : When total cost of the transaction is covered by the initial

purchase PCCharge will not return AMOUNT_DUE and AUTH_AMOUNT

tags.

PCCharge Version 5.9.0
Updated 2/8/2010

 115

Citi© Transactions/ Credit Plan

PCCharge 5.8.0 will now have the ability to process Credit Applications as well as Account Lookups for
Citi©.

Action Code Description

P3 Credit Application

P4 Account Lookup

P5
Counter Offer

Note: Follows a P3 when the result is OFFER.

Additional XML tags for the INX:
<MIDDLE_INITIAL>, <SUFFIX>, <APT_SUITE>, <EMAIL>, <EMP_NAME>, <HOME_OWNER>,

<ANNUAL_INCOME>, <PHOTO_ID_STATE>, <WORK_PHONE_NUM>, <SOURCE_CODE>

Additional XML tags for the OUX:
<CORRELATION_UID>, <PENDING_NUMBER>, <REPLY_FLAG>, <OPEN_TO_BUY>

Credit Application (P3)

Approved
INX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>P3</COMMAND>

<PROCESSOR_ID>CITI</PROCESSOR_ID>

<MERCH_NUM>512771092345</MERCH_NUM>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>1233.00</TRANS_AMOUNT>

<ZIP_CODE>85284</ZIP_CODE>

<STREET>8320</STREET>

<STATE>GA</STATE>

<PHONE_NUM>9123646469</PHONE_NUM>

<DOB>02022002</DOB>

<CUSTOMER_FIRSTNAME>Andy</CUSTOMER_FIRSTNAME>

<CUSTOMER_LASTNAME>Apple</CUSTOMER_LASTNAME>

<CUSTOMER_CITY>SAV</CUSTOMER_CITY>

<ID_TYPE>D</ID_TYPE>

<ID_NUMBER>121321313</ID_NUMBER>

<SS_NUM>999999999</SS_NUM>

<WORK_PHONE_NUM>9123665659</WORK_PHONE_NUM>

<MIDDLE_INITIAL>Ad</MIDDLE_INITIAL>

<APT_SUITE>8320</APT_SUITE>

<EMAIL>Andy@verifone.com</EMAIL>

<EMP_NAME>Verifone</EMP_NAME>

<HOME_OWNER>O</HOME_OWNER>

<ANNUAL_INCOME>12125</ANNUAL_INCOME>

<PHOTO_ID_STATE>GA</PHOTO_ID_STATE>

<SOURCE_CODE>AP</SOURCE_CODE>

</XML_REQUEST>

OUX:
<XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 116

<USER_ID>User1</USER_ID>

<TROUTD>10587</TROUTD>

<RESULT>APPROVAL</RESULT>

<AUTH_CODE>Please write down the Acct# & credit limit on Customer

Application.</AUTH_CODE>

<TRANS_DATE>072208</TRANS_DATE>

<INTRN_SEQ_NUM>10587</INTRN_SEQ_NUM>

<TIM>153055</TIM>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>@</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<ACCT_NUM>1234123412341234</ACCT_NUM>

<CREDIT_LIMIT>1.00</CREDIT_LIMIT>

</XML_REQUEST>

Rejected

INX: This transaction rejected as the <SOURCE_CODE> was sent as ‗AO‖ and the Opt Out trigger was
not turned ON in the PCCharge setup
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>P3</COMMAND>

<PROCESSOR_ID>CITI</PROCESSOR_ID>

<MERCH_NUM>512771092345</MERCH_NUM>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>1233.00</TRANS_AMOUNT>

<ZIP_CODE>85284</ZIP_CODE>

<STREET>8320</STREET>

<STATE>GA</STATE>

<PHONE_NUM>9123646469</PHONE_NUM>

<DOB>02022002</DOB>

<CUSTOMER_FIRSTNAME>Andy</CUSTOMER_FIRSTNAME>

<CUSTOMER_LASTNAME>Apple</CUSTOMER_LASTNAME>

<CUSTOMER_CITY>SAV</CUSTOMER_CITY>

<ID_TYPE>D</ID_TYPE>

<ID_NUMBER>121321313</ID_NUMBER>

<SS_NUM>999999999</SS_NUM>

<WORK_PHONE_NUM>9123665659</WORK_PHONE_NUM>

<MIDDLE_INITIAL>Ad</MIDDLE_INITIAL>

<APT_SUITE>8320</APT_SUITE>

<EMAIL>Andy@verifone.com</EMAIL>

<EMP_NAME>Verifone</EMP_NAME>

<HOME_OWNER>O</HOME_OWNER>

<ANNUAL_INCOME>12125</ANNUAL_INCOME>

<PHOTO_ID_STATE>GA</PHOTO_ID_STATE>

<SOURCE_CODE>AO</SOURCE_CODE>

</XML_REQUEST>

OUX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10586</TROUTD>

<RESULT>Error</RESULT>

<AUTH_CODE>Invalid Alt Source Code</AUTH_CODE>

<REFERENCE>Invalid Alt Source Code</REFERENCE>

<INTRN_SEQ_NUM>10586</INTRN_SEQ_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 117

Counter Offer (P5)

Counter Offers are always generated as a result of an Offer response on a

Credit Application (P3) transaction.

Approved

Credit Application that generated OFFER:

INX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>P3</COMMAND>

<PROCESSOR_ID>CITI</PROCESSOR_ID>

<MERCH_NUM>512771092345</MERCH_NUM>

<MANUAL_FLAG>0</MANUAL_FLAG>

<TRANS_AMOUNT>4000.00</TRANS_AMOUNT>

<ZIP_CODE>75038</ZIP_CODE>

<STREET>4210 MADERA</STREET>

<STATE>TX</STATE>

<PHONE_NUM>5043646469</PHONE_NUM>

<DOB>10101951</DOB>

<CUSTOMER_FIRSTNAME>CYNTHIA </CUSTOMER_FIRSTNAME>

<CUSTOMER_LASTNAME>ROBINSON </CUSTOMER_LASTNAME>

<CUSTOMER_CITY>IRVING</CUSTOMER_CITY>

<ID_TYPE>D</ID_TYPE>

<ID_NUMBER>121321313</ID_NUMBER>

<SS_NUM>298580650</SS_NUM>

<WORK_PHONE_NUM>5043665659</WORK_PHONE_NUM>

<EMAIL>Oracle@verifone.com</EMAIL>

<EMP_NAME>Verifone</EMP_NAME>

<HOME_OWNER>O</HOME_OWNER>

<ANNUAL_INCOME>12125</ANNUAL_INCOME>

<PHOTO_ID_STATE>TX</PHOTO_ID_STATE>

<SOURCE_CODE>AP</SOURCE_CODE>

</XML_REQUEST>

OUX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10588</TROUTD>

<RESULT>OFFER</RESULT>

<AUTH_CODE>Offered Amount $1000.00. Does customer accept the

offer?</AUTH_CODE>

<TRANS_DATE>072208</TRANS_DATE>

<INTRN_SEQ_NUM>10588</INTRN_SEQ_NUM>

<TIM>161918</TIM>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>@</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<CREDIT_LIMIT>1000.00</CREDIT_LIMIT>

<PENDING_NUMBER>072208ZG04552</PENDING_NUMBER>

<CORRELATION_UID>0820400DOE</CORRELATION_UID>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 118

Counter Offer Submission (Acceptance of Counter):
INX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>P5</COMMAND>

<TROUTD>10588</TROUTD>

<PROCESSOR_ID>CITI</PROCESSOR_ID>

<MERCH_NUM>512771092345</MERCH_NUM>

<MANUAL_FLAG>0</MANUAL_FLAG>

<PENDING_NUMBER>072208ZG04552</PENDING_NUMBER>

<CORRELATION_UID>0820400DOE</CORRELATION_UID>

<REPLY_FLAG>Y</REPLY_FLAG>

</XML_REQUEST>

OUX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10588</TROUTD>

<RESULT>APPROVAL</RESULT>

<TRANS_DATE>072208</TRANS_DATE>

<INTRN_SEQ_NUM>10589</INTRN_SEQ_NUM>

<TIM>162225</TIM>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>@</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<ACCT_NUM>6035511112200672</ACCT_NUM>

<CREDIT_LIMIT>1000.00</CREDIT_LIMIT>

</XML_REQUEST>

Account Lookup (P4)

Account Lookup by Account Number

INX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>P4</COMMAND>

<PROCESSOR_ID>CITI</PROCESSOR_ID>

<MERCH_NUM>512771092345</MERCH_NUM>

<MANUAL_FLAG>0</MANUAL_FLAG>

<ACCT_NUM>6035511110201185</ACCT_NUM>

</XML_REQUEST>

OUX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10602</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>The available credit displayed should be considered as a

guideline only.</AUTH_CODE>

<REFERENCE>Actual available credit could be different at the time of

sale</REFERENCE>

<TRANS_DATE>072408</TRANS_DATE>

<INTRN_SEQ_NUM>10602</INTRN_SEQ_NUM>

<TIM>113005</TIM>

PCCharge Version 5.9.0
Updated 2/8/2010

 119

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>@</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<ACCT_NUM>6035511110201185</ACCT_NUM>

<CREDIT_LIMIT>500.00</CREDIT_LIMIT>

</XML_REQUEST>

Account Lookup by Social Security Number

INX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>P4</COMMAND>

<PROCESSOR_ID>CITI</PROCESSOR_ID>

<MERCH_NUM>512771092345</MERCH_NUM>

<MANUAL_FLAG>0</MANUAL_FLAG>

<SS_NUM>426124765</SS_NUM>

<DOB>03271980</DOB>

</XML_REQUEST>

OUX:
<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>10603</TROUTD>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>The available credit displayed should be considered as a

guideline only.</AUTH_CODE>

<REFERENCE>Actual available credit could be different at the time of

sale</REFERENCE>

<TRANS_DATE>072408</TRANS_DATE>

<INTRN_SEQ_NUM>10603</INTRN_SEQ_NUM>

<TIM>113106</TIM>

<CMRCL_TYPE>0</CMRCL_TYPE>

<PURCH_CARD_TYPE>0</PURCH_CARD_TYPE>

<CARD_ID_CODE>@</CARD_ID_CODE>

<ACCT_DATA_SRC>T</ACCT_DATA_SRC>

<ACCT_NUM>6035511110201193</ACCT_NUM>

<CREDIT_LIMIT>500.00</CREDIT_LIMIT>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 120

Canadian (Interac) Debit Transactions

Overview

Starting with PCCharge 5.7, the integration of Canadian (Interac) debit transactions is supported when
using Global Payments East (NDC) as the processing company and the VeriFone SC5000 PINpad.
Canadian debit transactions are also supported when using the processing company Chase Paymentech
(GSAR) and the VeriFone SC5000 PINpad. Specifically, the use of these processors and PINpad allows
merchants to process transactions for customers using Interac debit cards. Currently, PCCharge only
supports a dial-up connection to Global Payments East (NDC). For the processor Chase Paymentech
(GSAR), TCP/IP and dial-up connectivity are supported. Also, the programming language used by the
integrator must support ActiveX OCX controls in order to support Canadian Debit transactions.

Note: The integration of Canadian debit transactions is more complicated than the integration of U.S.
debit transactions. Prior to coding, it is highly recommended that integrators review this section,
review the various API layouts that are referenced in this section, and then contact VeriFone, Inc.‘s
Development Support department to discuss the integration.

Note: If the processor Global Payments East (NDC) is used, once the integration is completed, the
integration must be certified by Global Payments East (NDC). If the processor Chase Paymentech
(GSAR) is used, no certification may be required. Contact VeriFone, Inc.‘s Development Support
department for more details.

Note: Canadian Debit is only supported when using the XML message format.

Definitions

MAC - Message Authentication Code – Canadian banks require ―MACing‖ when performing debit
transactions. MACing provides security when processing transactions because it ensures that the
messages used to communicate to the PINpad and to the processor are authentic. (Note: This acronym
is commonly pronounced as ―mack‖.)

MAC Block – String data generated by the PINpad and the processor based on the transaction data
submitted.

Interac Association – Interac is a Canadian organization responsible for the development of Canada's
national debit service. This service is known as ―Interac Direct Payment‖ (IDP). IDP was rolled out
across Canada in 1994.

Interac request string - The Interac request string is a string of text that is sent from the integrated
application to the PINpad—the transaction-specific data contained in this string is used by the PINpad
to prompt the customer to verify the amount of the transaction, choose which back account will be
used, enter their PIN, and optionally, specify a tip amount. Once this information has been entered by
the customer, the encrypted PIN, MAC Block, and other data is returned to the integrated application
in an Interac response string.

OMC (Out MaCing) and IMC (In MaCing) files – Files that PCCharge creates in the background to perform
MACing and data validation.

ReMACing – ReMACing is the process of sending the MAC data portion of the Interac request string to
the PINpad to retrieve a new MAC Block from the PINpad. During the ReMACing process, the customer
is not prompted to enter any data on the PINpad. ReMACing will need to performed if the transaction

PCCharge Version 5.9.0
Updated 2/8/2010

 121

details change during the process of building the debit transaction. Specifically, ReMACing is necessary
when adding a tip to a transaction or when the bank account type changes during the transaction.

Integration Notes

 Prior to sending the first Canadian debit transaction with the Verifone SC5000 PINpad, a key
change must occur. A key change is performed from the PINpad setup menu in the PCCharge
GUI. Choose Verifone SC5000 from the list and the appropriate radio button, either Global
Payments East (NDC) or Chase Paymentech (GSAR), modify the Com port settings if necessary,
and then click the Key Change button. PCCharge will connect via modem to Global Payments
East (NDC) or Chase Paymentech and perform the key change. A message will be returned
indicating whether or not the key change operation was successful.

 An error code 63, returned from Global Payments East (NDC) when processing transactions,
indicates that a key change request must be performed. This error can occur even after the
initial key change request has been performed.

 Canadian debit transactions must be coded to process in a single threaded manner for each
PINpad used. For example, for each PINpad, the first transaction must fully complete prior to
sending the second transaction.

 Only two transaction types are supported when processing Canadian debit transactions with
Global Payments East (NDC). These transaction types are Purchase (action code 41) and
Refund (action code 42). With Chase Paymentech (GSAR), Sale (action code 41), Return (action
code 42), Online Void Sale (action code D1), Online Void Return (action code D2), and Current
Key Request/Key Change Request (action code M1) are supported.

 When testing (or running live) Canadian debit transactions, Interac debit cards must be used.
Standard U.S. credit cards or debit cards will not work. The track II information is encoded
differently on Interac debit cards than it is on U.S. credit or debit cards. Specifically, Interac
debit cards have a character encoded on track II that indicates the language code of the card
(English or French), U.S. cards do not.

 The option Allow Duplicate Transactions in the NDC Debit Setup extended screen must be
checked if the same card and amount will be sent to Global Payments East (NDC) more than
once. Duplicate transactions are common in testing. If this option is not set and a duplicate

transaction is sent to the processor, the response ―AP DUP‖ will be returned.

 After a transaction has been successfully processed by Global Payments East (NDC), the

PinSC550.Initialize and PinSC550.GetSerialBlock methods must be called, in that

sequence, to reset the PINpad prior to calling the PinSC550.StartMSR method. If these

methods are not called in this sequence, the PINpad‘s chip serial number will not be passed
properly to Global Payments East (NDC). This will cause transactions to decline.

 When using the processor Global Payments East (NDC), it is highly recommended that the
integrator set the option to automatically process OMC files. To activate this option, first, set

the PinSC550.ServerPath property to the PCCharge directory, and then set the

PinSC550.AutoProcess property to TRUE. If the integrator chooses to manually process the

data in OMC and IMC files on their own (not recommended), the PinSC550 class provides three

methods to facilitate manual processing. Base64Decode and Base64Encode allow

integrators to encode and decode the Base 64 data in the OMC files. Encoding and decoding is
required because the XML message format does not support the non-standard characters that

appear in these files. InteracAnalysis allows integrators to send the string in the OMC file

(after it is decoded) to the PINpad for verification. Once the string is verified by the PINpad,
the merchant is assured that the transaction message returned by the processor is genuine.
Again, these three methods will not be used if the OMC files will be processed automatically by

the PinSC550 class.

 Global Payments East (NDC) requires the use of a POS Sequence Number for each PINpad used
to process transactions. The POS Sequence Number for each PINpad is stored by Global
Payments East (NDC) and passed to PCCharge with each transaction response. Because of this,

PCCharge Version 5.9.0
Updated 2/8/2010

 122

when using a new PINpad, the first transaction should be processed with a blank POS Sequence

number—this transaction will decline and return a result of ―NOT CAPTURED‖ and reference of

―Invalid Seq. Num‖. This error indicates that Global Payments East (NDC) has passed the

current POS Sequence Number to PCCharge, and that PCCharge has updated a file located in

the PCCharge directory named NDCDebitMsg.txt with the correct sequence number. At this

point, future transactions with this PINpad will be able to retrieve the correct POS Sequence
Number and process successfully.

 The GetPOSSequenceNumber method is provided in the OCX, DLL, and OLE/COM methods of

integration to retrieve the POS Sequence Number from a text file. This text file is named

NDCDebitMsg.txt and appears in the PCCharge directory. The POS Sequence Number is

unique to each PINpad and is required when processing transactions. If the File Method or TCP
Interface will be used to process transactions, the integrator must manually retrieve the POS
Sequence Number from this text file. The POS Sequence Number is stored in the file in the

format: <ChipSN><POSSeqNum>. For example, ―658A3P777‖ would indicate the Chip Serial

Number of ―658A3P‖ and the POS Sequence Number of ―777‖. Note: If multiple PINpads are
used, this file will contain multiple Chip Serial Number / POS Sequence Number entries.

 When processing transactions that include tips, Global Payments East (NDC) only processes the
total amount of the transaction (the total amount is defined as the amount of the sale plus the

tip). However, PCCharge requires that two properties, Amount and Gratuity, be populated

when submitting transactions that include tips. Once these two properties are set, their values
will be added together automatically by PCCharge when the transaction is submitted to Global
Payments East (NDC).

 The PinSC550 class has a communications monitor that can be used by the integrator to
troubleshoot integration and processing issues. To activate the communication monitor, set

the CommVisible property to TRUE.

 The OLE/COM method of integration may also be used to integrate Canadian Debit
transactions. When using the OLE/COM method, the class must be declared asynchronously in

order to activate events. For example, use ―Dim WithEvents‖ in the declaration section.

When calling the .Send method in the PCCDebit class, pass the ―TRUE‖ parameter to
execute the transaction asynchronously. This is only supported with Global Payments East
(NDC).

Integration

Tools
The DevKit includes a control named SC550.OCX and the SC5X.OCX. This control contains two

classes that are used to communicate to the Verifone SC5000 PINpad and to build and parse Interac
request strings:

 SC550.PinSC550 – This class provides properties and methods that allow client applications

to communicate with the Verifone SC5000 PINpad. Tables with the descriptions of the

properties and methods that are available in the SC550.PinSC550 class can be found starting
on page 245. Only used for the processor Global Payments East (NDC).

 SC550.clsInteracReq – This class provides properties and methods to build and parse the

Interac strings that are required to communicate to the PINpad. Tables with the descriptions

of the properties and methods that are available in the SC550.clsInteracReq class can be

found starting on page 251. Only used for the processor Global Payments East (NDC).

 SC5X.OCX – This OCX provides the properties and methods to communicate with the SC5000

pinpad. Only used for the processor Chase Paymentech (GSAR).

PCCharge Version 5.9.0
Updated 2/8/2010

 123

The DevKit also includes three tools that are also used to process Canadian debit card transactions with
PCCharge:

 Debit.OCX (OCX Method)

 Debit Class (DLL Method)

 PCCDebit Class (OLE/COM Method)

Depending on the integration method, one of the above tools should be used to enable the
client application to communicate to PCCharge. Refer to tables found in the applicable
sections in CHAPTER 6 -- PCCharge Integration Methods (see page 155) for descriptions of the
properties and methods used while integrating.

Process Flow when using the processor Global Payments East
(NDC)
The following explains the steps that are required to integrate Canadian Debit transactions. There are
three general categories:

1. Start Up – The steps outlined in Start Up should typically be performed each time the
integrated application is started.

2. Transaction Processing – The steps outlined in Transaction Processing should typically be

performed each time a debit card transaction is processed.

3. Shut Down – The steps outline in Shut Down should typically be performed when the
integrated application shuts down.

Note: In the steps below, when referencing the various properties and methods in the Debit.OCX, the

Debit class in PSCharge.dll, and the PCCDebit OLE class, all three of these tools will be referred
to as ―the debit control‖ for simplicity.

Start Up – When the integrated application starts up, the following steps should be performed:

1. Set the initial properties.

In the PinSC550 class, set the initial communication properties for the PINpad. These

properties are marked with a in the SC550.PinSC550 Class Properties table.

2. Open the port.

Use the OpenPort Method in the PinSC550 class to open the Com port that the PINpad is
connected to.

3. Initialize the PINpad.

Use the Initialize Method in the PinSC550 class to initialize the PINpad.

4. Retrieve the PINpad‟s Chip Serial Number.

Use the GetSerialBlock Method in the PinSC550 class to retrieve the PINpad‘s Chip Serial

Number. Once the serial number has been retrieved from the PINpad, the PinSC550 class will

fire the ActionUpdate event and the GPSPinPadAction will be set to

―ENUM_ACTION_REQ_SERIAL‖ (5). The ChipSN property in the PinSC550 class will contain
the PINpad‘s Chip Serial Number. Store the Chip Serial Number value as a variable—it will
need to be passed to the debit control.

PCCharge Version 5.9.0
Updated 2/8/2010

 124

5. Activate the automatic processing of OMC files (recommended).

To active the automatic processing of OMC files, set the properties marked with a in the
SC550.PinSC550 Class Properties table. The values that should be set are noted below:

 Set the ServerPath property of the PinSC550 class to the PCCharge directory

 Set the AutoProcess property of the PinSC550 class to TRUE (default is FALSE)

 Set the AutoInterval property of the PinSC550 class. This property determines

often the class will poll for the OMC files. Default is ―1000‖ (milliseconds).

Transaction Processing – Once all of the Start Up steps have been completed, perform the

following steps to process transactions:

1. Indicate to the PINpad to prompt the customer to swipe their debit card.

Use the StartMSR Method in the PinSC550 class to prompt the customer to swipe their debit

card. The message ―SWIPE CARD‖ / ―GLISSER CARTE‖ will appear on the PINpad‘s screen.

2. Wait for the customer to swipe the card. After it is swiped, retrieve and parse the track II

data and retrieve the language code.

Once the card has been swiped in the PINpad, the PinSC550 class will fire the ActionUpdate

event and the GPSPinPadAction will be set to ―ENUM_ACTION_MSR_RECEIVED_DATA‖ (7).

The TrackII property of the PinSC550 class will now contain the track II string from the

card. Parse this string to retrieve the card number and expiration date. Store the track II
data, card number, and expiration date values as variables—they will need to be passed to

the debit control. Also, the LanguageCode property of the PinSC550 class will contain the
language code that was retrieved from the track II data. Store the language code value as a

variable—it will need to be passed back to the PinSC550 class when calling the

RequestInterac method.

3. Retrieve the POS Sequence Number from PCCharge.

PCCharge stores the POS Sequence Number for each PINpad in a file in the PCCharge directory

named NDCDebitMsg.txt. In order to retrieve this number, set the debit control‘s Path

property to the PCCharge directory and then call the GetPOSSequenceNumber method in the
debit control. Note: The PINpad‘s Chip Serial Number must be passed as a parameter when

calling the GetPOSSequenceNumber method. Store the POS Sequence Number value as a

variable—it will need to be passed back to the clsInteracReq class when calling the

BuildInteracRequest method.

4. Build the Interac request string.

To build the Interac request string, instantiate the clsInteracReq class, populate the

required properties, and then call the BuildInteracRequest method in the

clsInteracReq class. The properties that are required when building the string are marked
with a in the SC550.clsInteracReq Class Properties table. The method will return the Interac
request string. Store the Interac request string as a variable—it will need to be passed back

to the PinSC550 class when calling the RequestInterac method. IMPORTANT: Do not clear

or change any of the properties in the clsInteracReq class or destroy the object at this
point. If ReMACing is required when processing this transaction, many of the properties that
have already been set will be re-used.

5. Send the Interact request string (from step 4) and the card‟s language code (from step 2) to
the PINpad. This will instruct the PINpad to prompt the customer to confirm the
transaction amount, enter a tip amount (optional), choose the bank account type (Chequing
or Savings), and enter their PIN.

PCCharge Version 5.9.0
Updated 2/8/2010

 125

Use the RequestInterac method in the PinSC550 class to send the Interac request string to

the PINpad. This will instruct the PINpad to prompt for the customer for various information.

The RequestInterac method requires two parameters: the Interact request string from step

4 and the language code from step 2. Once the RequestInterac method is executed, the
PINpad will prompt the customer to 1) confirm the transaction amount; 2) specify the tip
amount (optional); 3) choose their bank account type; and 4) enter their PIN.

6. Wait for the transaction-specific data to be entered by the customer on the PINpad. When
the PINpad indicates the data has been entered, parse the data.

Once data entry by customer has completed on the PINpad, the PinSC550 class will fire the

ActionUpdate event and the GPSPinPadAction will be set to

―ENUM_ACTION_INTERAC_RECEIVED_DATA‖ (16). The Interac response string returned by

the PINpad will be placed in the DeviceData property of the PinSC550 class. To parse the

string, pass it to the ParseResponseData method in the clsInteracReq class. When the

ParseResponseData method returns TRUE, the properties marked with a in the

SC550.clsInteracReq Class Properties table will be populated with the transaction-specific
data. Store the value returned in TipAmount as a variable—it may need to be passed to the
debit control. Also, store the values returned in MacBlock and PinBlock as variables—they
will need to be passed to the debit control.

7. Determine if ReMACing must occur. If ReMACing is not necessary, skip to step 9.

To determine if ReMACing must occur, check the value of the Boolean property RequireReMac

in the PinSC550 class. If this property is set to TRUE, then ReMACing is required. Otherwise,

ReMACing is not required, skip to step 9.

8. Request a new MAC block from the PINpad.

If RequireReMac is set to TRUE, a new MAC block must be retrieved from the PINpad. The

ReMacData property will contain a string of data that must be sent to the PINpad to retrieve a

new MAC block. To perform the ReMAC, pass the string in the ReMacData property to the

PINpad by using the RequestMAC method in the PinSC550 class. The RequestMAC method

requires one parameter, the string of MAC data, to be passed to it. Once the PINpad creates

and returns the new MAC block, the MACBlock property of the PinSC550 class will contain

the new MAC block. Store the value returned in the MACBlock property as a variable—it
will need to be passed to the debit control.

9. Process the transaction.
To process the transaction, set the path to the PCCharge directory in the debit control, check

if SYS.PCC exists, and then populate the required properties in the debit control with the

variables that have been stored by the application. The properties required to process a
transaction are marked with a in the various debit control tables in CHAPTER 6 -- PCCharge

Integration Methods (see page 155). Once the properties are populated, call the Send

method. The Send method will instruct the debit control to send the transaction to PCCharge.

PCCharge will then dial out to Global Payments East (NDC) and submit the transaction request.
Once the transaction is processed by Global Payments East (NDC), a response is returned to
PCCharge and the POS Sequence Number is updated. If the option to automatically process the
OMC files is selected, PCCharge will validate the response message automatically, and then
return the status of the transaction via the debit control to the integrated application. The

most important information is returned in the GetResult, GetAuth, and GetRefNumber

methods. Once all response data has been retrieved from the debit control, call the Clear or

ClearVariables method to reset all of the properties. Note: If the OMC files will not be
processed automatically, the integrator must poll for and then process the data returned in the
OMC files to validate the transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 126

10. Prepare the PINpad for the next transaction.

Once the transaction has completed, the PINpad‘s screen will display to the customer whether

or not the transaction was approved. After a few moments, the message ―OBTAIN CARD‖ will

appear on the PINpad‘s screen. In order to prepare the PINpad for the next transaction, call

the Initialize Method in the PinSC550 class. The PINpad‘s screen will display the message

―WELCOME/BONJOUR‖. To process the next transaction, return to step 1 of ―Transaction
Processing‖.

Shut Down – When the integrated application has finished processing transactions, the following step

should be followed:

1. Shut down the Port.

In the PinSC550 class, shut down the port by calling the ClosePort method in the PinSC550

class.

Note: All steps listed above are only applicable when using the processor Global Payments East (NDC).

Process Flow when using the processor Chase Paymentech
(GSAR)

1. Initialize the VeriFone SC5000 PINpad.

Using the SC5X.OCX, initialize the VeriFone SC5000 PINpad by setting the required properties
(see p. 193 for SC5X.OCX properties). The RetrieveCreditSwipe method can be called to set
the PINpad to a ready state and will prompt for the swipe. Once the swipe occurs, if
successful, the .Card, .Member, .ExpDate, and .Track properties will be populated
automatically, and the PINpad will prompt for the PIN number.

2. Send the transaction to PCCharge.

Send the transaction to PCCharge by calling the .Send 3 method of the SC5X.OCX. The

transaction will be sent to the Path specified in the .ServerPath property of the SC5X.OCX.

3. Retrieve the response.

Once PCCharge has processed the transaction request, call the various .Get methods to
retrieve the response. Once the response has been retrieved, parse the results to determine
the outcome of the transaction (see p. 194 for SC5X.OCX methods).

PCCharge Version 5.9.0
Updated 2/8/2010

 127

Transaction Inquiry

Overview

The PCCharge integration methods provide the ability to submit Transaction Inquiry requests. A

Transaction Inquiry request (action code ZI) retrieves transaction data stored in the PCCharge

database (pccw.mdb) based on the TroutD or account number that is submitted. The response

provided by PCCharge will include all available transaction records returned in XML tags that
correspond to the appropriate database fields. All five integration methods support the Transaction
Inquiry request.

Note: Sensitive information such as credit card numbers are encrypted in the PCCharge database. The
transaction inquiry command will not return credit card numbers in plain text. If credit card numbers
from past transactions are needed, these numbers must be stored in the integrated application. See
the sections Important Security Notice (see page 9) and Warnings, Tips, and Guidelines (see page 55)
for more information on the storage of sensitive cardholder data and the regulations related to data
storage.

Usage

OCX Method and DLL Method

To submit a Transaction Inquiry request via the OCX or DLL Methods, use the Charge.OCX control or

the Charge class of PSCharge.dll. Populate the following properties:

 User – A valid user name in PCCharge

 Path – The path to the PCCharge directory

 Command – ―ZI‖

 TroutD or Card – Populate only one of these properties. The request will return the results

based on the value passed in either one of these properties.

Once the properties are populated, call the Send method. Once the request is processed, the

response can be retrieved by calling the GetXMLResponse method. This method returns the contents

of the .oux file that is returned by PCCharge.

OLE/COM Method

To submit a Transaction Inquiry request via the OLE/COM Method, use the debit class (the charge

class cannot be used because charge‘s action property is defined as long and this property will not

accept the ―ZI‖ action code. Populate the following properties in the debit class:

 User – A valid user name in PCCharge

 Path – The path to the PCCharge directory

 Action – ―ZI‖

 TroutD or Card – Populate only one of these properties. The request will return the results
based on the value passed in either one of these properties.

PCCharge Version 5.9.0
Updated 2/8/2010

 128

Once the properties are populated, call the Send method. Once the request is processed, the

response can be retrieved by calling the GetXMLResponse method. This method returns the contents

of the .oux file that is returned by PCCharge.

File Method / TCP Interface

To submit a Transaction Inquiry request via the File Method or TCP Interface, pass a request to
PCCharge that contains the following tags:

 USER_ID - A valid user name in PCCharge

 COMMAND - ZI

 TROUTD or ACCT_NUM - Use only one of these tags. The request will return the results based
on the value passed in either one of these tags.

Once the request is processed, PCCharge returns the response in an .oux file.

General Note: The RECORD_COUNT tag in the XML response indicates how many transaction records

are returned for each account number or TroutD value. Multiple transaction records will be returned
(as nested XML tags) if this is the case. For example, if a Pre-Authorization was completed with a Post-

Authorization, and then Voided, RECORD_COUNT would indicate ―3‖ and three transaction records
would be returned.

PCCharge Version 5.9.0
Updated 2/8/2010

 129

Example

This example demonstrates performing a Transaction Inquiry request using the File Method or TCP
Interface. Refer to the section File Method (see page 478) for more information on the File Method or
TCP Interface API.

Request:
<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>ZI</COMMAND>

 <TROUTD>1003</TROUTD>

 </XML_REQUEST>

</XML_FILE>

Response:
<TRANS_INQUIRY>

 <RECORD_COUNT>1</RECORD_COUNT>

 <TRANS_RECORD>

 <TABLE>Trans</TABLE>

 <Number>1003</Number>

 <Ticket>123456789</Ticket>

 <Date>5/6/2004</Date>

 <Time>10:32:25</Time>

 <Station>User1</Station>

 <Processor>NOVA</Processor>

 <TID>99988836</TID>

 <Issuer>Visa</Issuer>

 <Member>VERIFONE TEST 3</Member>

 <ExpDate>1208</ExpDate>

 <Action>1</Action>

 <Manual>False</Manual>

 <Amount>$1.00</Amount>

 <Ref>00000000</Ref>

 <Result>CAPTURED</Result>

 <Auth>TESTVI</Auth>

 <Result_Ref>035</Result_Ref>

 <Tax_Amount>$0.00</Tax_Amount>

 <Total_Auth>$1.00</Total_Auth>

 <Trans_Indicator>1</Trans_Indicator>

 <ReqACI>Y</ReqACI>

 <RetACI>B</RetACI>

 <TransDate>0506</TransDate>

 <TransTime>103226</TransTime>

 <Card>4012........0026</Card>

 <PeriodicPayment>False</PeriodicPayment>

 <BatchNumber>0</BatchNumber>

 <ItemNumber>35</ItemNumber>

 <CVV2_Resp>X</CVV2_Resp>

 <Selected>False</Selected>

 <Commercial_Card>N</Commercial_Card>

 <Offline>N</Offline>

 <Status>A</Status>

 <TroutD>1003</TroutD>

 <CardPresent>0</CardPresent>

 <Business_Type>0</Business_Type>

 </TRANS_RECORD>

</TRANS_INQUIRY>

PCCharge Version 5.9.0
Updated 2/8/2010

 130

Batch Settlement

Overview

To submit a batch settlement request via the File Method or TCP Interface, pass a request to PCCharge
that contains the following tags:

 USER_ID - A valid user name in PCCharge

 COMMAND – (see below)

 MERCH_NUM – The merchant number

 PROCESSOR_ID – The processor ID

Once the request is processed, PCCharge returns the response in an .oux file if using the File Method

interface. If using TCP, the response is returned in the data stream.

Action Code Description

30 Batch Inquiry

31 Batch Close/Settle

32 Private Label Batch Close

33 Amex Split Settle

39 Close/Settle Batches for all merchant numbers*

* When using action code 39, an appropriate timeout value must be set to allow for closing/settling of all merchant numbers set up

in PCCharge. If action code 39 is chosen, a default value of 1200 seconds is selected. If a longer time is needed, the timeout property
must be set to an adequate value.

Simple Batch Request

Example:

1) Example of batch settlement request:

<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>31</COMMAND>

<PROCESSOR_ID>GSAR</PROCESSOR_ID>

<MERCH_NUM>999999999999519</MERCH_NUM>

</XML_REQUEST>

</XML_FILE>

Example of batch settlement response:

<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>Accepted</RESULT>

<AUTH_CODE>026 0207 9999</AUTH_CODE>

<REFERENCE>999999999999519</REFERENCE>

<INTRN_SEQ_NUM>1.00</INTRN_SEQ_NUM>

<TRANS_ID>026 0207 9999</TRANS_ID>

<TICODE>1</TICODE>

<RET>1</RET>

<TIM>1</TIM>

PCCharge Version 5.9.0
Updated 2/8/2010

 131

<BATCH_NUMBER>26</BATCH_NUMBER>

</XML_REQUEST>

</XML_FILE>

Example:

2) When the batch exceeds the maximum size allowed or that is configured in PCCharge, a response
file should look similar to this:

<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>Accepted</RESULT>

 <AUTH_CODE>00001</AUTH_CODE>

 <REFERENCE>000192000903</REFERENCE>

 <INTRN_SEQ_NUM>8.00</INTRN_SEQ_NUM>

 <TRANS_ID>00001</TRANS_ID>

 <TICODE>5</TICODE>

 <RET>2</RET>

 <TIM>1</TIM>

 <BATCH_NUMBER>001</BATCH_NUMBER>

 </XML_REQUEST>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>Accepted</RESULT>

 <AUTH_CODE>00002</AUTH_CODE>

 <REFERENCE>000192000903</REFERENCE>

 <INTRN_SEQ_NUM>13.00</INTRN_SEQ_NUM>

 <TRANS_ID>00002</TRANS_ID>

 <TICODE>5</TICODE>

 <RET>1</RET>

 <TIM>2</TIM>

 <BATCH_NUMBER>002</BATCH_NUMBER>

 </XML_REQUEST>

</XML_FILE>

Multiple Batches

Note: In the event there are multiple batches waiting to be settled in one settlement, the integrated
application will need to be designed to loop through the settlement response to retrieve the response
for each batch.

PCCharge Version 5.9.0
Updated 2/8/2010

 132

Amex Settlement

Action Code Description

33 Settlement Request

35 Reverse Batch

36 Resubmit Batch

37 Get Results

38 Finalize Batch

Additional XML tag: <BATCH_NUMBER>

AMEX Split Settlement
Split settle is the ability to connect directly to American Express to settle AMEX card transactions. Both
split dial and split settle will typically get lower per-transaction rates on American Express

transactions. Thru integration sending a command of 33 will allow developer to send an AMEX split

settlement request to PCCharge.

At the completion of settlement file transfer, a message of completion or error status will be returned
to the integrator. Once the transactions have successfully been transferred to AMEX, you may request
the AMEX settlement results as described in the Getting Amex settlement section below.
Alternatively, merchants may visit AMEX's website to view their settlement results. The following
information (supplied to VeriFone by AMEX) illustrates this concept:

"For questions regarding your American Express merchant account, American Express offers a free
Internet service, Online Merchant Services, which supports online account management specific to
payments, customer disputes and more. For information on how to enroll in Online Merchant Services,
please contact your account representative or visit

http://www.americanexpress.com/merchant. For merchants that are not enrolled in the online

account management tool, paper statements are issued for general account maintenance. For general
customer service, please call 800-528-5200."

A Credit card detail report request also is a good way to obtain those transactions that were sent to
American Express, the request should specify Card Type:, Start:, and End: filters to specify AMEX and
the date of the transactions to be viewed).

Getting Amex Settlement Result – This feature will allow you to view the confirmation and
acknowledgement files that have been obtained from AMEX regarding the settlement. The request

should include the action code 37 as well as the merchant account whose confirmation files
developer wishes to retrieve. Upon Request, PCCharge contact AMEX and download any
confirmation/acknowledge files for the selected merchant. Note that after settling, the
acknowledgement file could take up to 30 minutes and the confirmation file could take up to 4 hours.
The files will be located in the AMEXARCH folder in PCCharge Install directory.

Finalize Transactions – The request to mark AMEX transactions as settled.

Reverse – submit a reversal of an archived file.

Resubmit - To re-transmit a settlement file to American Express, simply send a request with action

code 36, a batch should not be re-transmitted to American Express unless directed by a Technical

Support Representative.

Example of an AMEX Split batch settlement request:

PCCharge Version 5.9.0
Updated 2/8/2010

 133

<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>33</COMMAND>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>999999999911</MERCH_NUM>

</XML_REQUEST>

</XML_FILE>

Example of an AMEX Split batch settlement response:

<XML_FILE>

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>Accepted</RESULT>

<AUTH_CODE>FTP transmission successful.</AUTH_CODE>

<REFERENCE>888000000359</REFERENCE>

<TICODE>0</TICODE>

<RESULT_CODE>2</RESULT_CODE>

<BATCH_NUMBER>5</BATCH_NUMBER>

<MERCH_NUM>888000000359</MERCH_NUM>

<PROCESSOR_ID>AMEX</PROCESSOR_ID>

</XML_REQUEST>

</XML_FILE>

Note: I have included cashier tags in the examples below. For backwards compatibility, these
tags are not mandatory. However, if the integrator does pass in these tags, validation will take
place for both cashier name/password accuracy and permissions.

Reverse Batch (35)

Use this action code to reverse an entire batch so that it can be edited and resubmitted.

INX:

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

<COMMAND>35</COMMAND>

<CASHIER_NAME>Manager</CASHIER_NAME>

<PASSWORD>Test123$</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000000359</MERCH_NUM>

<BATCH_NUMBER>004</BATCH_NUMBER>

<TXN_TIMEOUT>5000</TXN_TIMEOUT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>Reversal File Sent Successfully</AUTH_CODE>

<INTRN_SEQ_NUM>10596</INTRN_SEQ_NUM>

<MERCH_NUM>888000000359</MERCH_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 134

Resubmit Batch (36)

Use this action code to resubmit a previously settled batch. Would use this action if Amex did not
receive the previous settlement or if you have reversed and edited a batch and need to re-settle.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>36</COMMAND>

<CASHIER_NAME>Manager</CASHIER_NAME>

<PASSWORD>Test123$</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000000359</MERCH_NUM>

<BATCH_NUMBER>006</BATCH_NUMBER>

<TXN_TIMEOUT>5000</TXN_TIMEOUT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>Resubmittal File Sent Successfully</AUTH_CODE>

<INTRN_SEQ_NUM>10597</INTRN_SEQ_NUM>

<MERCH_NUM>888000000359</MERCH_NUM>

</XML_REQUEST>

Get Results (37)

Use this action code in order to retrieve any results files available on the Amex ftp site. Please note
that even though the integrator submits a batch number, this transaction will pull any files available at
Amex for this particular merchant setup. Therefore, this action may or may not return files for the
batch number that the integrator supplied in the request. The user would still have to go to the UI to
actually view the results.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>37</COMMAND>

<CASHIER_NAME>Manager</CASHIER_NAME>

<PASSWORD>Test123$</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000000359</MERCH_NUM>

<BATCH_NUMBER>004</BATCH_NUMBER>

<TXN_TIMEOUT>5000</TXN_TIMEOUT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>Files Retrieved</AUTH_CODE>

<INTRN_SEQ_NUM>13167</INTRN_SEQ_NUM>

<MERCH_NUM>888000000359</MERCH_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 135

If no files are present on the Amex site, the integrator will receive the following OUX.

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>NOT CAPTURED</RESULT>

<AUTH_CODE>No File Present</AUTH_CODE>

<INTRN_SEQ_NUM>13168</INTRN_SEQ_NUM>

<MERCH_NUM>888000000359</MERCH_NUM>

</XML_REQUEST>

If the account is not configured for Amex direct settlement, the integrator will receive the following
OUX.

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>NOT CAPTURED</RESULT>

<AUTH_CODE>AMEX Settlement Not Set Up</AUTH_CODE>

<INTRN_SEQ_NUM>13166</INTRN_SEQ_NUM>

<MERCH_NUM>888000001005</MERCH_NUM>

</XML_REQUEST>

Finalize Batch (38)

Use this action code to update the database to mark all the transactions in the batch as ―Settled‖.
Should only be done after the ACK and CON files have been retrieved and the merchant has verified
that the batch did indeed settle without errors.

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>38</COMMAND>

<CASHIER_NAME>Manager</CASHIER_NAME>

<PASSWORD>Test123$</PASSWORD>

<PROCESSOR_ID>VISA</PROCESSOR_ID>

<MERCH_NUM>888000000359</MERCH_NUM>

<BATCH_NUMBER>006</BATCH_NUMBER>

<TXN_TIMEOUT>5000</TXN_TIMEOUT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<RESULT>CAPTURED</RESULT>

<AUTH_CODE>Transactions Finalized</AUTH_CODE>

<INTRN_SEQ_NUM>13171</INTRN_SEQ_NUM>

<MERCH_NUM>888000000359</MERCH_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 136

Gift Settlement

RBS WorldPay (LYNK)

To submit gift settlement with RBS WorldPay we send an Action ―E1‖, this action invokes a gift
settlement routine. The settlement is processed then returns a response. The response string contains
the settlement response. The response will state whether the batch is Accepted, a Batch Record
Count, and the Batch Net Total.

Example:

INX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>E1</COMMAND>

<PROCESSOR_ID>LYNK</PROCESSOR_ID>

<MERCH_NUM>000001000041</MERCH_NUM>

<TXN_TIMEOUT>5000</TXN_TIMEOUT>

</XML_REQUEST>

OUX:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<TROUTD>1038</TROUTD>

<RESULT>Accepted</RESULT>

<INTRN_SEQ_NUM>1038</INTRN_SEQ_NUM>

<TRANS_ID>000000003</TRANS_ID>

<TICODE>1</TICODE>

<RESULT_CODE>2</RESULT_CODE>

<AUTH_AMOUNT>1.00</AUTH_AMOUNT>

<RECORD_COUNT>3</RECORD_COUNT>

<MERCH_NUM>000001000041</MERCH_NUM>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 137

Batch Totals Storage

PCCharge stores batch totals in the BatchTotals table of the PCCharge database. Developers can
access this table by building database queries. The data in this table can be used to write custom
reports that can assist merchants with reconciliation.

Note: This functionality is currently available only for FDMS Atlanta dial, lease-line, and TCP/IP Pass
through connections. Other processors and connection types will be added in future releases.

BatchTotals Table

PCCharge stores batch totals received from the processor in the PCCW.mdb database. These totals are

stored in the BatchTotals table after the completion of an inquiry or settlement. Information stored
includes:

Column Name Database Data Type Description

TransNum Text 10 characters Transaction number from PCCharge

Date Date/time Date of transaction

Time Text 8 characters Time of transaction

Action Text 2 characters
Action code of transaction:
30 = Inquiry

31 = Settlement

TID Text 32 characters Terminal ID number for merchant account

GrandTotal Currency Gross amount of settlement/inquiry (includes totals plus returns plus
voids)

Net Currency
Net amount of settlement/inquiry (includes totals minus returns

minus voids)

Additional columns include the following processor dependent columns: fee amount, returns, voids,
debit, EBT, check, stored value totals, and totals for each card issuer along with transaction counts.
More columns will be added in the future.

The totals information can be tracked using transaction number, date, time, action code, merchant
number, or any combination thereof. Queries can be linked with the settlement table.

PCCharge Version 5.9.0
Updated 2/8/2010

 138

Health Message Transaction

This is a transaction that will tell the state of PCCharge to determine if it is available accept
transactions. The Action Code for this transaction is ‗ZH‘. No parameters other than this action and
the user are needed. This function will return a string with a code that reflects PCCharge‘s state.

Note: PCCharge must be running for the ZH command to function.

The codes are as follow:

0 = OK response, transactions should process fine (No sys.pcc exists)
2 = Sys.pcc exists with no predefined code in it
3 = A Batch is in progress (Sys.pcc exists with a code 1 in the sys.pcc file)
4 = Database is being repaired (Sys.pcc exists with a code 2 in the sys.pcc file)
5 = Backup Zip is in progress (Sys.pcc exists with a code 3 in the sys.pcc file)
6 = Modem is being initialized (Sys.pcc exists with a code 4 in the sys.pcc file)
7 = Database is being archived (Sys.pcc exists with a code 5 in the sys.pcc file)
8 = The settlement file is locked (Sys.pcc exists with a code 6 in the sys.pcc file)
9 = A Reversal is in process
10 = A reversal is waiting (Only used for FDMS Atlanta)
11 = Reserved
12 = Reserved
13 = Reserved

For testing purposes, create a sys.pcc with the codes outlined above; verify that the response contains
the correct associated result code.

Request Example:

<XML_REQUEST>

<USER_ID>User1</USER_ID>

<COMMAND>ZH</COMMAND>

</XML_REQUEST>

Response Example:

<XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>0</RESULT>

</XML_REQUEST>

PCCharge Version 5.9.0
Updated 2/8/2010

 139

 Command Line Switches

The following table lists various command line switches that can be used to customize how PCCharge
Pro or Payment Server runs. Simply add these switches to the end of target line of the PCCharge Pro or
Payment Server shortcut.

Command Line Switch Description

/UI
Loads the PCCharge Payment Server graphical user interface (GUI) on

initialization. (PCCharge Payment Server only)

/IOL Turns on the IODebug.log file. This file is used for troubleshooting purposes.

/D

Activates Demo mode. In Demo Mode, PCCharge will operate with all five

integration methods if the XML message format is used. Important Note: Prior
to activation, the Demo mode command line switch must be deleted to enable

LIVE mode.

Command Line Switch Format

"C:\Program Files\PCCW\Pccw.exe" [/IOL] [/D]
"C:\Program Files\Active-Charge\Active-Charge.exe" [/UI] [/IOL] [/D]

Text inside [] is optional.

The command line switches must appear in the order specified above.

PCCharge Version 5.9.0
Updated 2/8/2010

 140

CHAPTER 5 -- DevKit Constants

PCCharge Version 5.9.0
Updated 2/8/2010

 141

DevKit Constants

Action Codes

Refer to CHAPTER 3 -- Payment Processing Basics (see page 41) for further descriptions of the various
transactions.

Credit Card
Action Code Description

1 Sale

2 Credit

3 Void Sale

4 Pre-Authorization

5 Post-Authorization

6 Void Credit

7 Void Post-Authorization

8 Commercial Card Sale

9 Commercial Card Credit

10 Commercial Card Post-Authorization

11 Pre-Authorization Return Note: Only available for processor NBS

13 Gratuity (finalizes or modifies a Restaurant Sale)

14 Sale with Gratuity

15 Book

17 Void Ship

P1
Pre-Paid Credit Card Balance Inquiry Note: Only available for Elavon (NOVA) and

Paymentech Tampa (GSAR)

P2
Pre-Paid Credit Card Authorization Reversal Note: Only available for processor Elavon
(NOVA)

P3
*
 Credit Application – Citi© Private Label Only

P4
*
 Account Lookup – Citi© Private Label Only

P5
*

Counter Offer – Citi© Private Label Only

Note: Follows a P3 when the result is OFFER.

* These Action Codes are available as of PCCharge version 5.8. They are the result of the new Citi©
Credit Plan functionality. Note: See Citi Credit Plan on page 115 for examples.

PCCharge Version 5.9.0
Updated 2/8/2010

 142

Debit
Action Code Description

40 Pre-Authorization Note: Only available for processor NBS

41 Sale

42 Return

43 Void Note: Not all debit card processors in PCCharge support debit void functionality

44 Debit Card Balance Inquiry Note: Only available for processor Elavon (NOVA)

46 Void Return

47 Post-Authorization Note: Only available for processor NBS

48 Sale Recovery

49 Return Recovery

M1 Key Change Request (Canadian Debit only)

D1 Online Void Sale (Canadian Debit via Chase Paymentech GSAR only)

D2 Online Void Return (Canadian Debit via Chase Paymentech GSAR only)

S21 Gratuity (Canadian Debit via Chase Paymentech GSAR only)

The SC5X.OCX supports gratuity with the S21 action code. Gratuity is input by the user into the VeriFone SC5000 exclusively

before the transaction is sent to PCCharge. Gratuity adjustments after the transaction are not available.

Check Verification
Action Code Description

20 MICR (verify)

21 COD / Phone (verify)

22 Driver‘s License (verify)

23 Double ID (verify)

50 MICR (verify in truncation mode)

54 Manager Override

Check Conversion
Action Code Description

24 Void Check

51 Sale (MICR)

52 Void (MICR)

53 Force (MICR)

59 Settle (MICR)

PCCharge Version 5.9.0
Updated 2/8/2010

 143

Check Conversion (Telecheck Only)
Action Code Transaction Description Properties

51 ECA Sale PCCharge sends the ECA request

and automatically handles the
status request

Required:

.User

.Path

.Processor

.MerchantNumber

.Amount

.MICRStatus

.CHECK_READER_C

ODE
.CheckType

.MICR_DATA

or
.Check_Number

.Account_Number

.Transit_Number
Conditional

.DL_TRACK_II

or

.Drivers_License

.State

.Phone_Number

Optional:
.CustomerCity

.CustomerStreet

.Zip_Code

.CustomerName

.Birth_Date

.Ticket

52 ECA Void PCCharge sends the void request
to TeleCheck

Required:
.User

.Path

.TroutD

Optional:
.Ticket

56 ECA Adjustment PCCharge sends the Adjustment

request to TeleCheck

Required:

.User

.Path

.TroutD

.Amount

Optional:
.Ticket

C4

C4

(continued)

ECA Authorization PCCharge sends only the ECA

Auth request and waits for the
POS to send either a C5 or C6

prior to sending the status

message

Required:

.User

.Path

.Processor

.MerchantNumber

.Amount

.MICRStatus

.CHECK_READER_C

ODE
.CheckType

.MICR_DATA

or

.Check_Number

.Account_Number

.Transit_Number

Conditional
.DL_TRACK_II

or

.Drivers_License

.State

.Phone_Number

Optional:

.CustomerCity

.CustomerStreet

.Zip_Code

PCCharge Version 5.9.0
Updated 2/8/2010

 144

.CustomerName

.Birth_Date

.Ticket

C5 ECA Completion Accepted PCCharge sends the status

message indicating the ECA has

been Accepted

Required:

.User

.Path

.TroutD

Optional:

.Ticket

C6 ECA Completion Refused PCCharge sends the status
message indicating the ECA as

been Refused. The merchant

may still hold the check for
paper deposit.

Required:
.User

.Path

.TroutD
Optional:

.Ticket

EBT
Action Code Description

60 Account Inquiry (GSAR and TSYS: Cash Benefits / Food Stamp Balance Inquiry)

61 Cash Withdrawal

62 Food Stamp Purchase (GSAR: Food Stamp Sale)

63 Food Stamp Credit (Return) (GSAR: Food Stamp Return)

64 Cash Post-Authorization (GSAR: Cash Benefits Prior Auth Sale)

65 Food Stamp Post-Authorization (Electronic Voucher) (GSAR: Food Stamp Prior Auth Sale)

66 Food Stamp Credit Post-Authorization

67 Cash Void

68 Food Stamp Void

69 Food Stamp Credit Void

70 Purchase or Purchase w/Cashback (GSAR: Cash Benefits Sale with or w/o Cash Back)

71 Foodstamp Purchase Recovery

72 Foodstamp Credit Recovery

73 Foodstamp Post-Auth Recovery

74 Cash Withdrawal Recovery

75 Cash Purchase Recovery

PCCharge Version 5.9.0
Updated 2/8/2010

 145

Gift

Note: Refer to the section Gift Card Transactions (see page 109) for a list of Gift Card processors and
the action codes they support.

Action Code Description

18 Balance Inquiry

25 Redemption / Sale

26 Register / Replace

27 Add Value / Prior Issuance / Increment / Reload

28 Activation / Activate

29 Void / Cancel

0A Deactivate / Close

0B Refund / Credit

0C Totals Inquiry / Current Day Totals

0D Previous Day Totals

0H Balance with Lock

0I Post-Authorization / Redemption Unlock

0N Redeem Points

0P Balance Merge

0Q Balance Adjustment / Unload

0R Balance Transfer

0S Report Lost / Stolen

0T Cash Out / Cash Back

0U Add Tip

0V Pre-Auth

Batch
Action Code Description

30 Batch Inquiry

31 Batch Close/Settle

32 Private Label Batch Close

33 Amex Split Settle

35 Reversing Batches for Amex Split Settle

36 Resubmitting Batches for Amex Split Settle

37 Getting Result Files for Amex Split Settle

39 Close/Settle Batches for all merchant numbers*

E1 LYNK Gift Settlement

* When using action code 39, an appropriate timeout value must be set to allow for closing/settling of all merchant numbers set up

in PCCharge. If action code 39 is chosen, a default value of 1200 seconds is selected. If a longer time is needed, the timeout property
must be set to an adequate value.

Report
Action Code Description

81 Credit Card Detail report

82 Batch Pre-Settle report

83 Batch Post-Settle report

84 Check Summary report

*Action code 80 is no longer a supported action code.

PCCharge Version 5.9.0
Updated 2/8/2010

 146

Miscellaneous
Action Code Description

90 Reinitialize Modem

99 Pre-Dial

ZA Transaction Archive

ZC Database Archive Configuration

ZI Transaction Inquiry

ZH Health Message

Zm Minimize PCCharge window

ZM Maximize PCCharge window

ZS Shut down PCCharge

ZD Delete Cashier

ZL Logout

ZP Change Password

ZR Reenable Cashier

ZU Add Cashier

Address Verification Response Codes

Response Code Address Match

A Address matches, ZIP code does not

B Address matches, postal code does not

C No match on address or postal code

D Street address and postal code matches

E AVS error

G Service not supported by non-US issuer

I Address not verified for international transaction

M Street address and postal code matches

N No match on address or ZIP code

P Postal code matches, address does not

R Retry, system is unavailable or timed out

S Service not supported by issuer (card type does not support AVS)

U Address information is unavailable

W 9-digit ZIP code matches, address does not

X Exact match

Y Address and 5-digit ZIP code match

Z 5-digit ZIP code matches, address does not

0 No response sent

PCCharge Version 5.9.0
Updated 2/8/2010

 147

CVV2/CVC2/CID Response Codes

Response Code Address Match

M CVV2/CVC2/CID match

N CVV2/CVC2/CID mismatch

P

Not processed -- Either the CVV2/CVC2/CID was not provided, or the card does not
have a CVV2/CVC2/CID value. If the CVV2/CVC2/CID was left blank, resubmit as a

zero dollar amount for the transaction so the customer's credit line won't be

affected by the second CVV2/CVC2/CID request.

S

Issuer indicates that the CVV2/CVC2/CID data should be present on the card, but
the merchant has indicated that the CVV2/CVC2/CID data is not present on the

card.

U
Issuer has not certified for CVV2/CVC2/CID or issuer has not provided
Visa/MasterCard with the CVV2/CVC2/CID encryption keys.

Credit Card Types

Credit Card Issuer Credit Card Type

American Express "AMEX"

Carte Blanche "CBLN"

Diner‘s Club "DCCB"

Discover "DISC"

Enroute "ENRT"

Fleet One "FLT1"

Fuelman "FUEL"

JAL "JAL "

JCB "JCB "

MasterCard "MC "

Wright Express "WEX "

Visa "VISA"

Voyager "VGER"

Note: All card types are padded with spaces to four characters.

PCCharge Version 5.9.0
Updated 2/8/2010

 148

System Error Codes and Descriptions

If an error occurs while using the OCX, DLL, or OLE/COM methods of integration, the GetErrorCode

and GetErrorDesc methods available in each class should be used to determine to cause of the error.

The table below shows the errors and descriptions that are returned by these methods.

Error Code Error Description Description

-14 A valid tid.pcc file does not exist in the directory provided in the Path property.

-1 PC-Charge not running
If an error occurred while calling PccSysExists (and PccSysExists did not
set the error code), this error code will be set.

-1 Invalid Card Number
When processing a credit card transaction, if the Send is called and the

CheckCard property is set to TRUE, Send will attempt to verify the credit card.
If the card fails that test, this error code will be set.

 File Error
If there was an error while using the DeleteUserFiles method, “File

Error” will be placed in the Error Description field (GetErrorDesc).

0 No Error Indicates that there were no errors while the function was being performed.

1 PC-Charge not running This error will occur if PCCharge is not running.

2 Batch function in progress
This error will occur If PCCharge is running a batch function

(close/inquire/settle).

3 Repair/Compact in progress This error will occur if PCCharge is running a repair or compact

4 Backup or restore in progress
This error will occur If PCCharge is in the process of backing up or restoring its

system files.

5 Unable to initialize Modem If PCCharge was unable to initialize the modem, this error will occur.

6 Timeout
If the transaction times out waiting for a reply from PCCharge, a timeout error
will occur.

7 Database backup in progress This error will occur if a database backup is in progress in PCCharge.

8 Invalid Credit Card Number

If the credit card is not a valid credit card and VerifyCreditCard is called,

VerifyCreditCard will set the error code and description to Invalid Credit
Card Number (for the OCX Method, it will not fire the error event.)

9 Check Service not supported
If the Service property is set to a service that the processor specified does not
support, this error will occur.

10 Invalid Expiration Date
If the expiration date is not a valid date and VerifyExpDate is called,

VerifyExpDate will set the error code and description to invalid expiration date

(for the OCX Method, it will not fire the error event.)

11 Invalid Amount

If the amount is set to a negative amount or no decimal is provided and

VerifyAmount is called, VerifyAmount will set the error code and description
to invalid amount (for the OCX Method, it will not fire the error event.)

12 Invalid Last Valid Date
If the LastValidDate property is set to an invalid format the Charge.OCX will

set the error code and description (for the OCX Method, it will not fire the error
event).

13 Settlement File Locked This error will occur if a settlement file in PCCharge is locked.

14 Configuration Change This error will occur if there is a configuration change in progress.

15 Unable to erase system files If the files cannot be erased before processing the function, this error will occur.

16 Sys.pcc unknown state This error will occur if the sys.pcc file is an unknown state.

17 Transaction Canceled
If the .pro file is deleted while the function is being processed and the class never

receives an .oux file, this error will occur.

18 Invalid Birth Date
If the Birth_Date property is set to an invalid format (Example: 11/02), this
error will occur.

19 Invalid Format
If the Amount property is set to an invalid format, ―.2‖, (for the OCX Method, the

ERROR event will fire).

30 No Key Serial Number Retrieved Debit.OCX – Did not retrieve a Key Serial Number to process pin-based debit.

31 No Pin Block Retrieved Debit.OCX – Did not retrieve a Pin Block to process pin-based debit.

50

Need to enter Driver‘s License

when transaction amount is

greater than $XX.XX

For SPS check, the Driver‘s License number must be supplied when the amount of

the sale transaction is greater than the DL Limit amount specified in the

PCCharge SPS settings.

PCCharge Version 5.9.0
Updated 2/8/2010

 149

51

Need to enter State Code when

transaction amount is greater

than $XX.XX

For SPS check, the State Code (GA, CA, NY, FL, etc) must be supplied when the

amount of the sale transaction is greater than the DL Limit amount specified in

the PCCharge SPS settings.

52

Need to enter Date of Birth when

transaction amount is greater

than $XX.XX

For SPS check, the Date of Birth must be supplied when the amount of the sale

transaction is greater than the DL Limit amount specified in the PCCharge SPS

settings.

53 Need to enter Phone Number For SPS check, the Phone number must be supplied on all transactions.

100 Invalid File Name
If no file name or merchant number are provided before calling a method that

accesses a file in the PSCharge.Offline class, this error will occur.

110 File Not Found
If the file name that was provided is not a valid file name, and a method in the

PSCharge.Offline class tries to access the file, this error will occur.

120 Invalid Record Number
If attempting to void a record in a .bch file and that record does not exist, this
error will occur.

150 Invalid Pccw Path
If PccwPath was not provided while performing the ProcessFile method, this
error will occur.

200 Error Erasing TMP File
If there is a problem sending the .tmp file to the Recycle Bin while performing

the Compact method, this error will occur.

SYS.PCC Codes and Descriptions

The presence of a file named SYS.PCC in the PCCharge directory indicates a busy or an error state.

The following are PCCharge system (application) codes that will appear the SYS.PCC file if it is

present. The SYS.PCC file will be written to the PCCharge directory and contain one of the following

code only if PCCharge shuts down or if it is in the middle of a function that will not allow transactions
to be processed. Once PCCharge is ready to process transactions again, the file will be deleted
automatically.

Code Description

0 PCCharge is not running

1 Batch Function in progress

2 Repair / Compact in progress

3 Backup or restore in progress

4 Unable to initialize modem

5 Database backup in progress

6 Settlement file locked

7
Configuration change in
progress

Note: If using the OCX, DLL, or OLE/COM methods of integration, the following methods may be used:

 PccSysExists – use to check for the existence of the SYS.PCC

 GetErrorCode – if SYS.PCC exists, use to retrieve the code from SYS.PCC

 GetErrorDesc – if SYS.PCC exists, use to retrieve the error description associated with the

code

PCCharge Version 5.9.0
Updated 2/8/2010

 150

Cashier Permissions Constants

An integrator that desires to grant Cashier Permissions through integration will be required to create

and send a bitmap. This will be sent as part of the <ADD_CASHIER></ADD_CASHIER> string

submitted to PCCharge. Each bit (0 = Not Allowed, 1 = Allowed) will create a section separated by
pipes ―|‖. An integrator wanting to pass a string giving a cashier only base permissions the bitmap
would appear as as 6 pipes ―||||||‖. This will default all permissions to false.

NOTE: See Cashier Permissions on page 75 for an example.

Sections Permissions Value

1: Credit Refund Function (Credit Refunds)

Void Functions (Credit Voids)

Batch Functions (Batch and Settlement)

AMEX_Settlement (AMEX Settlement Management)

Import Functions (Importing)

Each Permission must be
represented with either

a 0 (Not Allowed) or a

1(Allowed)

2: Debit Debit Authorizations (Debit Transactions)

Debit Refund

Debit Void

Each Permission must be

represented with either

a 0 (Not Allowed) or a
1(Allowed)

3: Check Check Authorizations

Check Refunds

Check Voids

Each Permission must be
represented with either

a 0 (Not Allowed) or a

1(Allowed)

4: EBT EBT Auth (EBT Transaction)

EBT Refund

EBT Void

Each Permission must be

represented with either

a 0 (Not Allowed) or a
1(Allowed)

5: Gift Gift Authorization

Gift Increment

Gift Cancel/Void

Gift Activate

Gift Register

Gift Points

Gift Balance Merge

Gift Balance Adjustment

Gift Balance Transfer

Gift Report Lost Stolen

Gift Cash Out

Gift Deactivate

Each Permission must be
represented with either

a 0 (Not Allowed) or a

1(Allowed)

PCCharge Version 5.9.0
Updated 2/8/2010

 151

6: Account

Information

Account Info

Reports (Reporting)

Customer Database Account Access

Customer Database Entry

Each Permission must be

represented with either

a 0 (Not Allowed) or a

1(Allowed)

7: System

Information

Merchant Setup

System Configuration

Hardware Configuration

Purge Trans

Access User Information

System Shutdown

Each Permission must be
represented with either

a 0 (Not Allowed) or a

1(Allowed)

8: CITI Private

Label
Credit Application

Account Lookup

Each Permission must be

represented with either

a 0 (Not Allowed) or a

1(Allowed)

PCCharge Version 5.9.0
Updated 2/8/2010

 152

Processing Company Codes

Note: The processor drop-down lists found in the various setup screens in PCCharge also serve as
accurate lists of the available processor codes.

Credit Card
Processing Company Processor Code

Alliance Data Systems, Inc. ADSI

American Express AMEX

FDMS Atlanta BPAS

Citibank Private Label CITI

ECHO ECHO

FDMS Nashville / Envoy FDCN

FDMS New Nashville FDNN

FDMS North / Cardnet CES

FDMS Omaha / FDR FDC

FDMS South / NaBanco NB

Fifth-Third Bank – St. Pete BPS

Global Payment-East NDC

Heartland Payment Systems HPTS

RBS WorldPay LYNK

National Bankcard Services NBS

National Processing Company NPC

Elavon (NOVA) NOVA

Chase Paymentech GSAR

TSYS (Formerly Vital) VISA

Debit
Processing Company Processor Code

Alliance Data Systems, Inc. ADSI

FDMS Atlanta BPAS

FDMS New Nashville FDNN

FDMS North / CardNet CES

FDMS Omaha / FDR FDC

FDMS South / NaBanco NB

Fifth-Third Bank – St. Pete BPS

Global Payments / East NDC

Heartland Payment Systems HPTS

RBS WorldPay LYNK

National Bankcard Services NBS

National Processing Company NPC

Elavon (NOVA) NOVA

Chase Paymentech GSAR

TSYS (Formerly Vital) VISA

PCCharge Version 5.9.0
Updated 2/8/2010

 153

Check Verification / Conversion
Processing Company Processor Code

Alliance Data Systems, Inc. ADSI

ArJay/SCAN Data Corporation ARJ

Certegy EFAX

Check Services powered by RMRS EZCK

CrossCheck CRCK

FDMS North / CardNet CES

Fifth-Third Bank – St. Pete BPS

National Check Network RMRS

Elavon (NOVA) Check Services NOVA

Chase Paymentech Check Services GSAR

Secure Payment Systems SPS

TeleCheck International, Inc. TECK

EBT
Processing Company Processor Code

Alliance Data Systems, Inc. ADSI

FDMS Atlanta BPAS

Fifth-Third Bank – St. Pete BPS

FDMS New Nashville FDNN

National Processing Company NPC

Chase Paymentech GSAR

RBS WorldPay LYNK

TSYS (Formerly Vital) VISA

Gift
Processing Company Processor Code

FDMS Atlanta BPAS

Datamark Gift Card DMRK

Fifth-Third Bank – St. Pete BPS

Givex GVEX

RBS WorldPay LYNK

Mellennia MELL

Chase Paymentech GSAR

Secure Payment Systems SPS

Smart Transaction Systems SMTS

Stored Value Systems SVSI

ValueLink VLNK

Valutec VTEC

TSYS (Formerly Vital) VISA

World WRLD

PCCharge Version 5.9.0
Updated 2/8/2010

 154

Transaction Result Constants

Result Transaction Type Description

CAPTURED Monetary Successful online transaction now ready for settlement

NOT CAPTURED Varies Unsuccessful online transaction

APPROVED Non-Monetary
Successful offline transaction for Terminal based processors, or
successful Pre-Authorization for Host based processors)

NOT APPROVED Varies
Unsuccessful offline transaction or unsuccessful Pre-Authorization

for Host based processors

PROCESSED Off-line Transaction, Report
Transaction was processed (Terminal based processors only); report
was generated

CANCELLED Any Transaction canceled by operator or modem never connected

VOIDED Void Successful (with most Terminal based processors)

SALE NOT FOUND
Follow On (Void, Gratuity,

etc.)
Unsuccessful (with most Terminal based processors)

GRATUITY ADDED Gratuity

Successful (Offline Transaction for Terminal based processors.
Depending on the processor and amount, some Gratuity

transactions may be authorized online for Terminal based

processors)

Error Varies Unsuccessful transaction

Problem Report Unsuccessful Report Request

SALE RECOVERED Debit Sale Recovery Successful Debit Sale Recovery

RETURN RECOVERED Debit Return Recovery Successful Return Recovery

Settle Error Settlement Unsuccessful Settlement

Closed Batch Close Successful Batch Close

not closed Batch Close Unsuccessful Batch Close

OPEN TO BUY Private Label Successful Open to Buy Inquiry on an ADSI Private Label card

INVALID PARAM Transaction Inquiry
Account number or TroutD not passed to Transaction Inquiry
command

Accepted Settlement Successful Settlement

Result Code = 2 Settlement Batch Closed/Settled

Result Code = 6 Settlement Batch Declined

Result Code = 8 Settlement Batch Deferred

PCCharge Version 5.9.0
Updated 2/8/2010

 155

CHAPTER 6 -- PCCharge Integration
Methods

PCCharge Version 5.9.0
Updated 2/8/2010

 156

Pseudo-code

This section includes several programming algorithms that may be followed when using the OCX, DLL,
or OLE/COM methods of integration to perform payment processing. These examples are intended to
be general pseudo-code type of examples and are not intended to reflect any one particular
programming environment.

The examples in this section represent the most common transactions that integrators may want to
support when enabling payment processing in their application. Integrators can refer to the API, code
samples, or contact Development support for questions about any of the transactions that are not
covered in this section.

PCCharge Version 5.9.0
Updated 2/8/2010

 157

Credit Card Sale/Pre-Authorization – Retail / Card Present

This algorithm demonstrates the coding required to perform a swiped credit card transaction in a retail
environment. Note: The processor must be configured for ―Retail‖ or ―Restaurant‖ in the Credit Card
Company Setup in PCCharge to support swiped transactions.

„Create A Charge Object

Set Charge = new ChargeComponentOrReference

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Processor = “PROC” „Processor Code set up in PCCharge

 .MerchantNumber = “12345” „Merchant Number set up in PCCharge

 .Action = “1” „1 = sale, 4 = pre-Authorization

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

 .Multi = “1” „Multi-trans Wait flag

 .LastValidDate = “12” „Last Valid Date that can be accepted

 .PrintReceipts = “1” „Number of receipts printed by PCCharge

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„Collect the transaction data from card reader and user input and set the

„credit card transaction properties:

.Card = “Account Number” „Credit Card Account Number. It is required

that this value is trimmed to remove spaces.

- REQUIRED

 .ExpDate = “MMYY” „Expiration Date on the Credit Card –

 ‘REQUIRED

 .Amount = “1.00” „The transaction amount in two decimal places

 „format without commas - REQUIRED

 .Member = “Cardholder Name” „The Cardholder Name - OPTIONAL

 .Manual = 1 ‘Manual flag. 1 = card is swiped - REQUIRED

 .Track = “Track II data” „Track II data from the credit card –

 ‘REQUIRED Track II data qualifies the

PCCharge Version 5.9.0
Updated 2/8/2010

 158

 ‘merchant for the best transaction rate

 .Ticket = “123456789” „Invoice or ticket number assigned by the

 „integrator or merchant – CONDITIONAL

 „(required by some processors)

„Validate the input. The various .Verify methods can be used to validate the

„credit card number, expiration date, and amount. Validation should also

„occur at input time.

 If .VerifyCreditCard (“Account Number”) = False Then

 „Exit and return to credit card input

 If .VerifyExpDate = False Then

 „Exit and return to credit card input

 If .VerifyAmount = False Then

 „Exit and return to credit card input

„Process the transaction by calling the .Send method

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

NOTE: Some languages such as Delphi and C++ require that a variable be set

and that all optional arguments must be passed. Check with language

documentation for variable settings and syntax.

 Var TTYPE_XML: LongWord; „C++ equivalent would be a long

 TTYPE_XML := 3;

 .Send(FileType(TTYPE_XML));

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

 Select Case Trim(.GetResult)

PCCharge Version 5.9.0
Updated 2/8/2010

 159

„If the transaction is approved, display the results of the transaction on

„the user‟s screen, print a receipt, etc.

 Case “CAPTURED” , “APPROVED” „Successful results

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Authorization code from Issuing bank

 Print .GetRefnumber „Reference number

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display

 „information about the transaction.

„If the transaction is approved, store pertinent information such as the

„TroutD, Authorization code, Result, Amount, Cardholder name, etc. in a

„database table or other storage medium. This information can used for

„reporting purposes and to enable “follow-on” transactions such as Voids and

„Post-Authorizations.

 INSERT INTO DatabaseTable VALUES

 (.GetTroutD, „The PCCharge Transaction Routing ID

 .GetAuth, „Authorization code from Issuing bank

 .GetResult, „Transaction result constant

 .Amount, „Transaction amount

 .Member) „Cardholder name

 „Store any other data desired. Please note that the credit card

 „associations prohibit the storing any type of Track I or Track II

 „data. If the credit card number and expiration date are to be

 „stored, they must stored in an encrypted state.

„If the transaction is not approved, display the results to the user.

 Case "NOT CAPTURED", "NOT APPROVED", "CANCELED", “Error”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

PCCharge Version 5.9.0
Updated 2/8/2010

 160

 „be called in both the FINISH and ERROR events to avoid

 „double-charging or reconciliation issues.

 .Clear „Resets all properties and provides a clean environment to

 „process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 161

Credit Card Sale/Pre-Authorization – Card Not Present

This algorithm demonstrates the coding required to perform a manually keyed credit card transaction
in the following industries: Retail, eCommerce, and Mail Order/Telephone Order

„Create A Charge Object

Set Charge = new (ChargeComponentOrReference)

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Processor = “PROC” „Processor Code set up in PCCharge

 .MerchantNumber = “12345” „Merchant Number set up in PCCharge

 .Action = “1” „1 = sale, 4 = pre-Authorization

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

 .Multi = “1” „Multi-trans Wait flag

 .LastValidDate = “12” „Last Valid Date that can be accepted

 .PrintReceipts = “1” „Number of receipts printed by PCCharge

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„Collect the transaction data from user input and set the credit card

„transaction properties:

 .Card = “Account Number” „Credit Card Account Number. It is required

that this value is trimmed to remove spaces.

- REQUIRED

 .ExpDate = “MMYY” „Expiration Date on the Credit Card –

 ‘REQUIRED

 .Amount = “1.00” „The transaction amount in two decimal places

 „format without commas - REQUIRED

 .Member = “Cardholder Name” „The Cardholder Name - OPTIONAL

 .Manual = 0 ‘Manual flag. 0 = card is manually keyed –

 ‘REQUIRED

 .Ticket = “123456789” „Invoice or ticket number assigned by the

 „integrator or merchant – REQUIRED for lowest

 „rate (also required by some processors)

PCCharge Version 5.9.0
Updated 2/8/2010

 162

 .Street = “Billing Street” „Cardholder‟s street address – REQUIRED for

 „lowest rate

 .Zip = “Billing Zip” „Cardholder‟s zip code – REQUIRED for lowest

 „rate

 .CVV2 = “123” „Card Verification Value - OPTIONAL

„Validate the input. The various .Verify methods can be used to validate the

„credit card number, expiration date, and amount. Validation should also

„occur at input time.

 If .VerifyCreditCard (“Account Number”) = False Then

 „Exit and return to credit card input

 If .VerifyExpDate = False Then

 „Exit and return to credit card input

 If .VerifyAmount = False Then

 „Exit and return to credit card input

„Process the transaction by calling the .Send method

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

 Select Case Trim(.GetResult)

 Case “CAPTURED” , “APPROVED” „Successful results

„If the transaction is approved, display the results of the transaction on

„the user‟s screen, print a receipt, etc.

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Authorization code from Issuing bank

 Print .GetRefnumber „Reference number

PCCharge Version 5.9.0
Updated 2/8/2010

 163

 Print .GetAVS „Address Verification Response from card issuer

 Print .GetCVV2 „Card Verification Response from card issuer

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display

 „information about the transaction.

„If the transaction is approved, store pertinent information such as the

„TroutD, Authorization code, Result, Amount, Cardholder name, etc. in a

„database table or other storage medium. This information should used for

„reporting purposes and to enable “follow-on” transactions such as Voids and

„Post-Authorizations.

 INSERT INTO DatabaseTable VALUES

 (.GetTroutD, „The PCCharge Transaction Routing ID

 .GetAuth, „Authorization code from Issuing bank

 .GetResult, „Transaction result constant

 .Amount, „Transaction amount

 .Member) „Cardholder name

 „Store any other data desired. Please note that the credit card

 „associations prohibit the storing of the CVV2, CVC2, or CID values.

 „If the credit card number and expiration date are to be stored, they

 „must stored in an encrypted state.

„If the transaction is not approved, display the results to the user.

 Case “NOT CAPTURED”, “NOT APPROVED”, “CANCELED”, “ERROR”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events to avoid

 „double-charging or reconciliation issues.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

PCCharge Version 5.9.0
Updated 2/8/2010

 164

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 165

Level II (Commercial, Purchasing, etc.) Card Sale

This algorithm demonstrates the coding required to perform a swiped Level II Sale transaction.
Typically, commercial, purchasing, procurement, business, and government card transactions require
additional information in order for them to qualify for the lowest rates.

„Create A Charge Object

Set Charge = new ChargeComponentOrReference

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Processor = “PROC” „Processor Code set up in PCCharge

 .MerchantNumber = “12345” „Merchant Number set up in PCCharge

„If Level II card processing will supported in the application, use the

„.CommercialCardType method (in Charge.OCX or in the DLL‟s Charge class)

„or the .CommercialCard function (in the PccBin OLE Class) to determine

„whether the credit card is a commercial card prior to assigning the

„.Action. For example, if the transaction is a sale, and the card is a

„commercial card, the action code should be set to “8” and customer should

„be prompted for the level II data (tax and customer code). Otherwise, the

„action code should be set to “1” for a standard credit card sale.

 .Action = “8” „8 = Level II card sale

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

 .Multi = “1” „Multi-trans Wait flag

 .LastValidDate = “12” „Last Valid Date that can be accepted

 .PrintReceipts = “1” „Number of receipts printed by PCCharge

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„Collect the transaction data from card reader and user input and set the

„credit card transaction properties:

.Card = “Account Number” „Credit Card Account Number. It is required

that this value is trimmed to remove spaces.

– REQUIRED

PCCharge Version 5.9.0
Updated 2/8/2010

 166

 .ExpDate = “MMYY” „Expiration Date on the Credit Card –

 ‘REQUIRED

 .Amount = “1.00” „The transaction amount in two decimal places

 „format without commas - REQUIRED

 .Member = “Cardholder Name” „The Cardholder Name - OPTIONAL

 .Manual = 1 ‘Manual flag. 1 = card is swiped - REQUIRED

 .Track = “Track II data” „Track II data from the credit card –

 ‘REQUIRED Track II data qualifies the

 ‘merchant for the best transaction rate

 .Ticket = “123456789” „Invoice or ticket number assigned by the

 „integrator or merchant – CONDITIONAL

 „(required by some processors)

 „rates

 .CustCode = “Customer Code” „Cardholder‟s Customer code – REQUIRED for

 „lowest rates

 .TaxAmt = “0.05” „The amount of tax included in the total

 „amount (inclusive). Set to 0.00 if customer

 „is tax exempt - REQUIRED

 .TaxExempt = False „Tax Exempt Flag – REQUIRED

„If using the OCX or DLL Method, use the following code to set the

„.CommercialCardFlag:

 .CommercialCardFlag = .getCommercialCardType(“Account Number”)

„If using the OLE/COM Method, the PccBin class must also be used. Use the

„following code to set the .CmrclCardFlag:

 If PccBin1.CommercialCard(“Account Number”) Then

 .CmrclCardFlag = PccBin1.CommercialCardType

 End If

„Validate the input. The various .Verify methods can be used to validate the

„credit card number, expiration date, and amount. Validation should also

„occur at input time.

 If .VerifyCreditCard (“Account Number”) = False Then

 „Exit and return to credit card input

 If .VerifyExpDate = False Then

 „Exit and return to credit card input

 If .VerifyAmount = False Then

 „Exit and return to credit card input

„Process the transaction by calling the .Send method

PCCharge Version 5.9.0
Updated 2/8/2010

 167

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

 Select Case Trim(.GetResult)

„If the transaction is approved, display the results of the transaction on

„the user‟s screen, print a receipt, etc.

 Case “CAPTURED” , “APPROVED” „Successful results

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Authorization code from Issuing bank

 Print .GetRefnumber „Reference number

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display

 „information about the transaction.

„If the transaction is approved, store pertinent information such as the

„TroutD, Authorization code, Result, Amount, Cardholder name, etc. in a

„database table or other storage medium. This information can used for

„reporting purposes and to enable “follow-on” transactions such as Voids and

„Post-Authorizations.

 INSERT INTO DatabaseTable VALUES

 (.GetTroutD, „The PCCharge Transaction Routing ID

 .GetAuth, „Authorization code from Issuing bank

 .GetResult, „Transaction result constant

 .Amount, „Transaction amount

 .Member) „Cardholder name

 „Store any other data desired. Please note that the credit card

 „associations prohibit the storing any type of Track I or Track II

 „data. If the credit card number and expiration date are to be

 „stored, they must stored in an encrypted state.

„If the transaction is not approved, display the results to the user.

PCCharge Version 5.9.0
Updated 2/8/2010

 168

 Case "NOT CAPTURED", "NOT APPROVED", "CANCELED", “Error”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events to avoid

 „double-charging or reconciliation issues.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 169

Credit Card Void

This algorithm demonstrates the coding required to perform a credit card void transaction. A void is
considered a PCCharge ―follow-on‖ transaction because of its use of the TroutD functionality.

„Create A Charge Object

Set Charge = new (ChargeComponentOrReference)

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Action = “3” „3 = void; 6 = void credit; 7 = void

„post-authorization; 17 = void ship

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

 .Multi = “1” „Multi-trans Wait flag

 .PrintReceipts = “1” „Number of receipts printed by PCCharge

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„The third-party application should provide a list of transactions that can

„be voided (or other similar option). The application should allow the user

„to pick the transaction to be voided from the list. The third-party

„application should now pass the transaction‟s stored TroutD value to

„PCCharge:

 .TroutD = “1234” „Transaction Routing ID from the original Sale

 „or Post-Authorization that will be voided –

 „REQUIRED

„Process the transaction by calling the .Send method

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

PCCharge Version 5.9.0
Updated 2/8/2010

 170

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

 Select Case Trim(.GetResult)

 Case “VOIDED”, “CAPTURED” „Successful results

„If the transaction is voided, display the results of the transaction on

„the user‟s screen, print a receipt, etc.

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Void Response (may be returned)

 Print .GetRefnumber „Reference number (may be returned)

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display

 „information about the transaction.

„If the transaction is voided successfully, update the transaction‟s status

„in the third-party application‟s database table.

 SELECT * FROM DatabaseTable WHERE TroutD=”1234”

 "Status".Value = "VOIDED"

„If the void fails for some reason, display the results to the user.

 Case “Sale Not Found”, “Error”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

PCCharge Version 5.9.0
Updated 2/8/2010

 171

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events to avoid

 „reconciliation issues.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 172

Credit Card Sale/Pre-Authorization – Restaurant

This algorithm demonstrates the coding required to perform a swiped credit card transaction in a
restaurant environment.

Note: The processor must support and be configured for ―Restaurant‖ in the Credit Card Company
Setup in PCCharge to support restaurant transactions.

Note: Manually keyed transactions are also supported in a restaurant environment. If transactions will
be manually keyed, make sure the appropriate rate qualifying information is sent with each
transaction. See the Credit Card Sale/Pre-Authorization – Card Not Present algorithm (see page 161)
for more information.

„Create A Charge Object

Set Charge = new (ChargeComponentOrReference)

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Processor = “PROC” „Processor Code set up in PCCharge

 .MerchantNumber = “12345” „Merchant Number set up in PCCharge

 .Action = “1” „1 = sale, 4 = pre-Authorization

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

 .Multi = “1” „Multi-trans Wait flag

 .LastValidDate = “12” „Last Valid Date that can be accepted

 .PrintReceipts = “1” „Number of receipts printed by PCCharge

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„Collect the transaction data from card reader and user input and set the

„credit card transaction properties:

.Card = “Account Number” „Credit Card Account Number. It is required

that this value is trimmed to remove spaces.

- REQUIRED

 .ExpDate = “MMYY” „Expiration Date on the Credit Card –

 ‘REQUIRED

 .Amount = “10.00” „The transaction amount in two decimal places

 „format without commas - REQUIRED

PCCharge Version 5.9.0
Updated 2/8/2010

 173

 .Member = “Cardholder Name” „The Cardholder Name - OPTIONAL

 .Manual = 1 ‘Manual flag. 1 = card is swiped - REQUIRED

 .Track = “Track II data” „Track II data from the credit card –

 „REQUIRED to qualify the merchant for the

 „best transaction rate

 .Ticket = “123456789” „Invoice or ticket number assigned by the

 „integrator or merchant – CONDITIONAL

 „(required by some processors)

 .EstGratuityAmount = “1.50” „The estimated gratuity amount (not added to

 „settlement amount) in two decimal places

 „format without commas- OPTIONAL

 .MCSN = “02” „The Server ID – OPTIONAL Processor specific note: The

 Server ID is required for AMEX card transactions in restaurant setting.

„Validate the input. The various .Verify methods can be used to validate the

„credit card number, expiration date, and amount. Validation should also

„occur at input time.

 If .VerifyCreditCard (“Account Number”) = False Then

 „Exit and return to credit card input

 If .VerifyExpDate = False Then

 „Exit and return to credit card input

 If .VerifyAmount = False Then

 „Exit and return to credit card input

„Process the transaction by calling the .Send method

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

PCCharge Version 5.9.0
Updated 2/8/2010

 174

 Select Case Trim(.GetResult)

 Case “CAPTURED” , “APPROVED” „successful results

„If the transaction is approved, display the results of the transaction on

„the user‟s screen, print a receipt, etc.

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Authorization code from Issuing bank

 Print .GetRefnumber „Reference number

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display \

 „information about the transaction.

„If the transaction is approved, store pertinent information such as the

„TroutD, Authorization code, amount, cardholder name, etc. in a database

„table or other storage medium. This information should used for reporting

„purposes and to enable “follow-on” transactions such as Gratuity, Voids and

„Post-Authorizations.

 INSERT INTO DatabaseTable VALUES

 (.GetTroutD, „The PCCharge Transaction Routing ID

 .GetAuth, „Authorization code from Issuing bank

 .GetResult, „Transaction result constant

 .Amount, „Transaction amount

 .Member) „Cardholder name

 „Store any other data desired. Please note that the credit card

 „associations prohibit the storing any type of Track I or Track II

 „data. If the credit card number and expiration date are to be

 „stored, they must stored in an encrypted state.

„If the transaction is not approved, display the results to the user.

 Case "NOT CAPTURED", "NOT APPROVED", "CANCELED", “Error”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

PCCharge Version 5.9.0
Updated 2/8/2010

 175

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events to avoid

 „double-charging or reconciliation issues.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 176

Credit Card Gratuity – Restaurant

This algorithm demonstrates the coding required to perform a gratuity in a restaurant environment. A
Gratuity is considered a PCCharge ―follow-on‖ transaction because of its use of the TroutD
functionality.

Note: The processor must support and be configured for ―Restaurant‖ in the Credit Card Company
Setup in PCCharge to support restaurant transactions.

Note: PCCharge supports gratuity adjustments. If, for any reason, an existing gratuity is incorrect or
the gratuity must be changed after it has been added to the transaction, the gratuity action (action
code 13) can be used to correct or change the amount as many times as needed prior to settlement.

„Create A Charge Object

Set Charge = new (ChargeComponentOrReference)

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Action = “13” ‟13 = Gratuity add / adjustment

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

 .Multi = “1” „Multi-trans Wait flag

 .PrintReceipts = “1” „Number of receipts printed by PCCharge

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„The third-party application should provide a list of transactions that can

„be voided (or other similar option). The application should allow the user

„to pick the transaction to be voided from the list. The third-party

„application should now pass the transaction‟s stored TroutD value to

„PCCharge:

 .TroutD = “1234” „Transaction Routing ID from the original Sale

 „or Post-Authorization that will be voided –

 „REQUIRED

 .GratuityAmount = “1.50” „The estimated gratuity amount - REQUIRED

„Process the transaction by calling the .Send method

PCCharge Version 5.9.0
Updated 2/8/2010

 177

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

 Select Case Trim(.GetResult)

 Case “Gratuity Added” „Successful result

„If the gratuity is added or adjusted, display the results of the transaction

„on the user‟s screen, print a receipt, etc.

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Void Response (may be returned)

 Print .GetRefnumber „Reference number (may be returned)

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display

 „information about the transaction.

„If the gratuity is added or adjusted successfully, in the third-party

„application‟s database table: add the gratuity to the transaction and update

„the transaction‟s status.

 SELECT * FROM DatabaseTable WHERE TroutD=”1234”

 "Status".Value = "Gratuity Added"

 "Gratuity Amount".Value = .GratuityAmount

„If the gratuity transaction fails for some reason, display the results to

„the user.

 Case “Sale Not Found”, “Error”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

PCCharge Version 5.9.0
Updated 2/8/2010

 178

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events to avoid

 „reconciliation issues.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 179

Debit Sale

This algorithm demonstrates the coding required to perform an online debit transaction in a retail
environment. Specifically, this algorithm demonstrates processing a debit transaction using DUKPT
encryption using a Verifone 1000/101 PINpad. Also, this algorithm only applies to U.S.-based debit
processing companies.

To integrate a PINpad, use Device.OCX or the PccPinPad OLE class provided with the DevKit.

Alternatively, a direct integration to the PINpad may also be used. Contact the PINpad
manufacturer(s) for details on integrating directly to PINpads.

„Declare local variables to store the Key Serial Number and the PIN that are

„retrieved from the PINpad.

Dim KSN, EncryptedPIN as String

„Initialize the PINpad. To initialize using Device.OCX or the PccPinPad OLE

„class, set required properties such as the baud rate, parity, etc. and then

„call the .Initialize method.

If PinPad.Initialize Then MsgBox “PINpad Initialized”

„Create A Debit Object

Set Debit = new DebitComponentOrReference

With Debit

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .Processor = “PROC” „Processor Code set up in PCCharge

 .MerchantNumber = “12345” „Merchant Number set up in PCCharge

 .Action = “41” „41 = Debit sale

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

„Check to see if PCCharge is running and available to process transactions

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„Collect the debit transaction information from the card reader and user

„input. Once the debit transaction information has been collected, prompt

„the cardholder for their PIN.

PCCharge Version 5.9.0
Updated 2/8/2010

 180

 „If using the Device.OCX:

 „Set the .Card and .Amount properties and then call the .GetPin method:

 PinPad.Card = “Account Number” „Must send Debit Card Number to PINpad

 PinPad.Amount = “25.00” „Must send transaction Amount + CashBack

„amount to PINpad

 „Collect the data by calling the .GetPin and .GetKeySerialNumber methods:

 EncryptedPIN = .GetPin „Prompts the customer for the PIN and

„returns the Encrypted PIN value

 KSN = .GetKeySerialNumber „Returns the Key Serial Number – not

„returned by all PINpads

 „If using the PccPinPad OLE class:

 „Set the .Card and .Amount properties and then call the .GetPin method:

 PinPad.Card = “Account Number” „Must send Debit Card Number to PINpad

 PinPad.Amount = “25.00” „Must send transaction Amount + CashBack

„amount to PINpad

 If PinPad.GetPin Then „Prompts the customer for the PIN. After

„the customer has successfully entered

„the PIN into the PINpad, the .GetPin

„method will return TRUE. The encrypted

„PIN and Key Serial Number are available

„in the .PIN and .KeySerialNumber

„properties

 EncryptedPIN = .PIN „The Encrypted PIN value

 KSN = .KeySerialNumber „The Key Serial Number – not returned by

„all PINpads

 End If

„If using a direct integration to a PINpad, collect the Encrypted PIN and Key

„Serial Number from the PINpad and assign these values to the proper

„variables.

„Set the debit card transaction properties:

 .Card = “Account Number” „Debit Card Account Number - REQUIRED

 .ExpDate = “MMYY” „Expiration Date on the Debit Card - REQUIRED

 .Amount = “20.00” „The transaction amount in two decimal places

 „format without commas – REQUIRED

 .CashBack = “5.00” ‘The CashBack amount in two decimal places

 „format without commas - OPTIONAL

 .Member = “Cardholder Name” „The Cardholder Name - OPTIONAL

PCCharge Version 5.9.0
Updated 2/8/2010

 181

 .Manual = 1 ‘Manual flag. 1 = card is swiped - REQUIRED

 .Track = “Track II data” „Track II data from the debit card – REQUIRED

 .Ticket = “123456789” „Invoice or ticket number assigned by the

 „integrator or merchant – CONDITIONAL

 „(required by some processors)

.Pin = EncryptedPIN „PIN from PINpad - REQUIRED

.KeySerialNumber = KSN „Key Serial number from PINpad – CONDITIONAL

 „(populate if returned by the PINpad)

„Process the transaction by calling the .Send method

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the transaction has completed

 „processing. If the transaction cannot be submitted or a TimeOut occurs,

 „an ERROR event will fire instead. These events should kick off result

 „checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the transaction using the GetResult method

 Select Case Trim(.GetResult)

„If the transaction is approved, display the results of the transaction on

„the user‟s screen, print a receipt, etc.

 Case “CAPTURED” , “APPROVED” „Successful results

 Print “TRANSACTION SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „Authorization code from Issuing bank

 Print .GetTroutD „PCCharge Transaction Routing ID

 „Use any of the other .Get methods in the class to display

 „information about the transaction.

„If the transaction is approved, store pertinent information such as the

„TroutD, Authorization code, Result, Amount, Cardholder name, etc. in a

„database table or other storage medium. This information can used for

„reporting purposes.

PCCharge Version 5.9.0
Updated 2/8/2010

 182

 INSERT INTO DatabaseTable VALUES

 (.GetTroutD, „The PCCharge Transaction Routing ID

 .GetAuth, „Authorization code from Issuing bank

 .GetResult, „Transaction result constant

 .Amount, „Transaction amount

 .Member) „Cardholder name

 „Store any other data desired. Please note that the card

 „associations prohibit the storing any type of Track I or Track II

 „data or PIN information. If the debit card number and expiration

 „date are to be stored, they must stored in an encrypted state.

„If the transaction is not approved, display the results to the user.

 Case "NOT CAPTURED", "NOT APPROVED", "CANCELED", “Error”

 Print “TRANSACTION NOT SUCCESSFUL”

 Print .GetResult „Transaction Result Constant

 Print .GetAuth „The reason why transaction was not approved.

 „This value is provided by the processor.

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the transaction has completed and all data has been extracted from the

„result file, delete the file from the PCCharge directory.

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events to avoid

 „double-charging or reconciliation issues.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Debit object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Debit = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 183

Reports

This algorithm demonstrates the coding required to submit a report request to PCCharge. To submit a

report request using the OCX Method, use Charge.OCX, for the DLL Method, use PSCharge.charge,

and for OLE/COM, use ActiveCharge.PccCharge.

„Create A Charge Object

Set Charge = new (ChargeComponentOrReference)

With Charge

„Set Required Initial Properties

 .Path = “C:\Program Files\active-charge\” „Set path to the PCCharge

directory

 .User = “User1” „The username set up in PCCharge

 .CheckCard = False „Turns of credit card validity testing.

„Only necessary for the OCX and DLL

„methods

 .Action = “81” „81 = Credit Card Detail; 82 = Batch Pre-

 „Settle; 83 = Batch Post-Settle; 84 =

„Check Summary

„Set Optional Initial Properties

 .TimeOut = 45 „TimeOut value in seconds

„If no other parameters are passed, PCCharge will print a report for the

„current 24 hour period to the default report printer that is set up in

„PCCharge once the Send method is called. Integrators may pass in optional

„parameters for output and filtering to customize the reports and how they

„are delivered.

„Set Optional Output parameters

 .PeriodicPayment = "1" „Output type: 0 – Print to PCCharge‟s

„default report printer; 1 – Print to

„file using filename specified in TRANSID

 .Track = "C:\Documents and Settings\JohnD\Desktop\" „Destination directory

 „for output file (40

 „characters max)

 .CustCode = "ReportDirectory\" „Continuation of destination directory if

„directory name is greater than 40

„characters. The values in Track and

„CustCode are concatenated together once

„submitted. The last character of the

„directory name must be “\”. (25

„characters max)

 .TRANSID = Report.pdf „Filename and extension of the report

„file. The extension determines the file

„type returned. Valid extensions: .pdf,

„.rtf, or .txt

PCCharge Version 5.9.0
Updated 2/8/2010

 184

„Set Optional Filter parameters

 .Card = "User1" „User name Filter

 .MerchantNumber = "999999999911" „Merchant Number Filter

 .Street = 04/07/08 12:00:00 PM „Starting Date / Time Filter

 .Member = 04/08/08 11:00:00 AM „Ending Date / Time Filter

 .Manual = 1 „Transaction Result Filter: 0 = all

„(default); 1 = approved; 2 = declined

„Check to see if PCCharge is running and available to accept requests

 If .PccSysExists then „Notify user of error and exit procedure

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 Else „PCCharge is running and ready to process transactions

„Submit the report request by calling the .Send method

 .Send 3 „OCX / DLL - the “3” parameter activates the XML message format

 .Send , 3 „OLE/COM - the “3” parameter activates the XML message format

 „The .Send method with the “3” parameter creates a file called

 „<username>.inx that contains the transaction request and drops it in the

 „PCCharge directory. Depending on how integration occurs, the Send

 „method is either a blocking (synchronous) or a non-blocking

 „(asynchronous) call. The OCX supports asynchronous (event-driven)

 „programming. The DLL Method supports synchronous programming. The

 „OLE/COM method supports both synchronous and asynchronous programming.

 „If the integration is event-driven (asynchronous), the FINISH event will

 „fire within a few moments indicating that the report request has

 „completed. If the report request cannot be submitted or a TimeOut

 „occurs, an ERROR event will fire instead. These events should kick off

 „result checking sub-routines in the application.

 „If the integration is not event-driven, place the result checking sub-

 „routines immediately after the .Send method.

„Check the results of the report request using the GetResult method

 Select Case Trim(.GetResult)

 Case “Processed”

„If the report request is successful, notify the user that the report has

„been printed or the report file is available. If accessing the report

„programmatically, begin parsing the report.

 Print “REPORT NOW AVAILABLE”

 Case “Problem”

„If the report request fails for some reason, display a message to the user.

PCCharge Version 5.9.0
Updated 2/8/2010

 185

 Print “REPORT REQUEST UNSUCCESSFUL”

„If an error occurs (such as a TimeOut error), display the error code and

„description to the user. If the integration is event-driven, this code

„would be placed in the ERROR event.

 Case Else

 Print “Error: “ & .GetErrorCode

 Print “Description: “ & .GetErrorDesc

 End Select

„Once the report request has completed and all data has been extracted from

„the result file, delete the file from the PCCharge directory.

 .DeleteUserFiles „Deletes all files associated with the transaction. If

 „the integration is event-driven, DeleteUserFiles should

 „be called in both the FINISH and ERROR events.

.Clear „Resets all properties and provides a clean environment to

„process the next transaction.

 End if „.PccSysExists check

End With

„IMPORTANT - Destroy the Charge object to reset all properties and methods.

„Also, the Clear method or ClearVariables method can be used to reset all

„properties and methods in the object.

Set Charge = Nothing

PCCharge Version 5.9.0
Updated 2/8/2010

 186

OCX (ActiveX) Method

Several OCX controls are included with the DevKit. These controls allow developers to access various
processing functions using any Windows-based visual programming environment that supports OCX
controls.

Before an OCX control can be used, the control must be added to the visual programming language
toolbox or equivalent. For example, in Microsoft Visual Basic 6, follow the procedure below:

1. Choose Project | Components from the Visual Basic menu bar.

2. After the Components window opens, from the list, scroll to and check the box next to the

control(s) that will be used:

 VeriFone‟s Charge ActiveX Control (for Credit card integration)

 VeriFone‟s Debit ActiveX Control (for Debit card or EBT integration)

 VeriFone‟s Check ActiveX Control (for Check integration)

 VeriFone‟s GiftCard ActiveX Control (for Gift/Loyalty integration)

 VeriFone‟s Batch ActiveX Control (for Batch/Settlement integration)

 VeriFone‟s Device ActiveX Control (for PINpad integration)

 VeriFone's SC550 ActiveX Control (for VeriFone SC5000 PINpad integration-Canadian debit for
Global Payments East NDC)

 VeriFone‟s SC5X ActiveX Control (for VeriFone SC5000 PINpad integration-Canadian debit for
Chase Paymentech GSAR)

and click OK.

Note: The DevKit installation registers the controls by default. If the controls are not yet

registered on the system, use regsvr32.exe to register them, or use the Browse button on the
Components window to register the component and add it to the toolbar.

3. The control(s) will now be added to the toolbar. Each control can be added to the project by

placing it in the desired area on the form.

Each control‘s properties, methods, and events can be viewed through the object browser. If MS VB6 is
not being used, refer to the language documentation for instructions on using ActiveX OCX Controls.

PCCharge Version 5.9.0
Updated 2/8/2010

 187

Note to .Net Framework Users

The OCX method is available in .Net through the use of the provided Charge-net.OCX, Debit-net.OCX
and Batch-net.OCX. The regular Check.OCX, GiftCard.OCX, Device.OCX can be used with .Net.

Note to Delphi Users

The OCX method is available in Delphi through use of the provided Type Library Files (.tlb) for the
corresponding Control. Rather than importing the OCX components to the tool palette, import the Type
Libraries and create a wrapper. This can be done by following the procedure below:

1. Select Project | Import Type Library from the menu bar. (In Delphi 2005 / 2006, select

Component | Import Component from the menu bar. Make sure that the radio button for Import a
Type Library is selected, and then click the Next button)

2 A list of Libraries (.dll, .ocx, .olb, .tlb) will be available from which to choose. Click on the Add
button, and browse to the location of the Type Library Files you wish to import. Once the new
Library is highlighted (click the Next button in Delphi 2005 / 2006), there will be property fields
indicating the classes of the Library, the palette page, the Unit Dir Name, and the Search Path.
These fields can be left as default. Make sure that Create Wrapper is checked (Delphi 7 and below),
and select Create Unit (click the Next button in Delphi 2005 / 2006 and then Create Unit).

3. This will add a text wrapper the Delphi Project. The name of this wrapper will be the name of the
Library plus _TLB.pas. (For example: if importing the Charge.tlb, the wrapper name will be
Charge_TLB.pas). Save this file to your project‘s working directory. It then must be added to the
Uses clause of the .pas file in which it is intended to be used.

unit Unit1;

Interface

Uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, StrUtils, Charge_TLB;

4. The next step would be to instantiate the main class of the Library, and load the OCX into memory
so that the properties are accessible. One way to dynamically load the OCX into memory is to
declare a THandle variable and a variable to hold the class, use LoadLibrary.The following example
shows how to load the Charge OCX using this method:

Type //

 TCharge1 = class(OCXCharge) // Instantiate the main class of the Library

End; //

procedure TForm1.ProcessButtonClick(Sender: TObject);

var

 hCharge: THandle; // Create a handle for the Library

 Charge: TCharge1; // Variable to hold the Charge Class

Begin

 hCharge := LoadLibrary(„Charge.ocx‟);

 if (hCharge = 0) then

 Begin

 ShowMessage(„Error Loading Library‟);

 Exit;

 End

 Else

 If (hCharge <> 0) then

 Begin

 Charge := TCharge1.Create(Self);

 End;

PCCharge Version 5.9.0
Updated 2/8/2010

 188

5. Now all of the Properties for the main class of the Charge OCX will be available.

Note to Visual FoxPro 6 Users

The instruction "application.autoyield = .F." must be executed before the Send method can
be called for any of the ActiveX controls. A sample Visual FoxPro 6 application is included. It is located

in the directory C:\Program Files\active-charge SDK\Ocx\FoxPro\.

Note to Visual C++ Users

The standard versions of the OCX controls can be used in a Visual C++ project. The control can be
added by going to Project | Components | Add Registered Controls. Visual C++ will provide a wrapper
that will give the project access to the various properties and methods in the control. A sample Visual

C++ application is included. It is located in the directory C:\Program Files\active-charge

SDK\Ocx\Cpps\.

PCCharge Version 5.9.0
Updated 2/8/2010

 189

Charge.OCX

Charge.OCX provides integrators with properties and methods used to submit credit card transactions

to PCCharge. To use Charge.OCX to integrate transaction processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the

Charge.OCX properties table are the minimum required to process a Sale or Pre-Authorization
transaction.) NOTE: Beginning with PCCharge version 5.8 the transaction messages may include

the CashierName and CashierPassword properties to take advantage of PCI Cashier Changes.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

4. Wait for the Error or Finish event to occur.

5. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

6. Call the DeleteUserFiles method to delete all files related to the transaction.

7. Call the Clear method to reset all the properties and methods related to the transaction or

destroy the object.

Consult the Pseudo-code section (see page 156) for various examples that may be followed when using

the Charge.OCX to perform transaction processing.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

Charge.OCX Dependencies

The following dependencies are required for the Charge.ocx to operate properly upon deployment.
Most of these files are already installed with the Windows© operating system.

File name Version File name Version
USER32.DLL 5.1.2600.2622 DARTCERTFICATE.DLL N/A

RPCRT4.DLL 5.1.2600.2180 DARTSECURE2.DLL N/A

OLEAUT32.DLL 5.1.2600.2180 DARTSOCK.DLL N/A

OLE32.DLL 5.1.2600.2726 MSXML3.DLL N/A

NTDLL.DLL 5.1.2600.2180

MSVCRT.DLL 7.0.2600.2180

GDI32.DLL 5.1.2600.2818

MSVBVM60.DLL 6.0.97.82

KERNEL32.DLL 5.1.2600.2945

ADVAPI32.DLL 5.1.2600.2180

PCCharge Version 5.9.0
Updated 2/8/2010

 190

Charge.OCX Properties

Property Data Type Description - Charge.OCX Properties

Action Long
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.
Example: Incorrect format ―0001.00‖.

AmxChargeDescription String

The American Express Charge Description. This is a general description

describing merchandise: the AMEX representative and the merchant will

decide on an appropriate description. Note: Only Required for Retail, MOTO
and Restaurant transactions when using AMEX direct settlement or TSYS. Max

Length: 23 bytes

AmxDescription_1 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:
Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes

This field is optional and should only be provided if the transaction will be
settled directly with Amex or TSYS

AmxDescription_2 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max
Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AmxDescription_3 String

American Express Description data. Additional description or information
about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes
This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AmxDescription_4 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:
Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AuthCode String

The Authorization code. This value is returned by the issuing bank and

should only be set in a transaction request if processing a Post-Authorization

and the Post-Authorization is being used to add a Voice-Authorization to the

batch or to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The AuthCode property does not need to be

set if the Post-Authorization completes a standard Pre-Authorization using

the TroutD value of the Pre-Authorization. See the section Follow On

Transactions for more information (see page 70).

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the

transaction is being processedfor payment of a bill (ultilty, monthly gym

dues, etc.) Valid values:

0 – Non-Bill payment transaction
1 – Bill payment transaction

PCCharge Version 5.9.0
Updated 2/8/2010

 191

Property Data Type Description - Charge.OCX Properties

Card String

The credit card number that will be used when processing the transaction.

Max Length: 20 characters. Example: 5424180279791765
NOTE: Is it the integrator‘s responsibility to remove spaces in the card

number if there are spaces in the Track II card number data.

CheckCard Boolean

Flag that indicates whether to activate credit card validity testing. Valid

Values: TRUE; FALSE. Default value: TRUE. This value must be set to

FALSE when performing Follow on transactions such as Voids or Gratuities
because the card number is omitted from these transaction requests.

Command String

The action code that identifies what type of transaction will be performed.

Valid Values: 1-10, 13-15, ZI, ZH. Example: If running a credit card sale, set

the action code to ―1‖. Consult the section DevKit Constants for a list of

valid values (see page 141). Note: Because the Action property is defined
as ―long‖, this property was added to allow action codes that contain strings

(such as Transaction Inquiry - ZI). If the Command property is set, it‘s value

will override the value set in Action.

CommercialCardFlag String

The type of commercial card being submitted. The

getCommercialCardType method should be used to retrieve the 1

character value from PCCharge that indicates what type of commercial card
will be submitted. See the section Commercial Card Transactions (see page

94) for more information. Max Length: 1 character

Valid values:

B – Business

P,L,G -- Purchase

C – Corporate

F – Fleet

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer
1 – TCP/IP

Please refer to page 20 for a description of these methods.

If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also
be set. If File_Transfer is set then the Path property must be set.

CustCode String

Customer code for purchasing/commercial cards. This property must be set

for commercial card transactions in order to get the best discount rate.

Additionally, the transaction‘s action code must indicate that the transaction
is a commercial card transaction. Note: Global East (NDC), terminal based,

requires the customer code be all upper case. Max Length: 25 characters,

alphanumeric only.

CreditPlanNumber String
The credit plan number, only applicable when using Citi as the processor for
private label cards.

CVV2 String

The CVV2 value for the transaction. The card verification value (CVV2 for

Visa, CVC2 for MasterCard, and CID for AMEX and Discover) is a 3 or 4 digit

number that is embossed in the signature panel for Visa, MasterCard, and
Discover and on the front of the card for AMEX. All AMEX cards utilize a 4

digit CID. Max Length: 4 characters. CVV2 should only be passed on non-
swiped transactions.

Demo Boolean

The demo mode flag. In demo mode, a simulated response is returned in

which even amounts return approved, and odd amounts return declined.

Valid Values: TRUE – Activates demo mode

FALSE – Deactivates demo mode (default)

DEST_ZIP_CODE String

Destination Zip Code for American Express purchasing/commercial cards.

This property must be set for American Express commercial card transactions

when using American Express as the processor (or via split dial) in order to

get the best discount rate. Additionally, the transaction‘s action code must
indicate that the transaction is a commercial card transaction.

DriverID String
Driver identification field. Only required for Wright Express, Voyager and

Fleet One cards.

DriverPIN String Driver personal identification number. Only required for Fuelman cards.

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.

Note: See SSL Information on page 70 for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 192

Property Data Type Description - Charge.OCX Properties

EstGratuityAmount String

For use with Restaurant transactions only. The estimated gratuity amount

for a Sale (action code 1) or Pre-Authorization (action code 4) transaction.

If the EstGratuityAmount is populated, PCCharge will submit the sum of

the values in the Amount and EstGratuityAmount fields for authorization.

If the transaction is authorized, only the value in the Amount field will be
placed in the PCCharge settlement file (if running a Sale). By using the

EstGratuityAmount, the merchant can help ensure that the customer has
enough available credit on their card to leave a tip. Once the customer

indicates the amount of the tip that will be left, a gratuity transaction

(action code 13) must be performed on the sale prior to settlement in order

to add the actual gratuity to the transaction. Format: DDDDDD.CC. Max

Length: 9 characters, including the decimal. The value may not be
negative. Note: The amount MUST include the decimal point and the cents

even if the amount is a whole dollar amount. Example: ―3.00‖, not ―3‖ or

―3.‖. If sending less than one dollar, the zero place holder must be sent as

well. See the section Restaurant Transactions (see page 104) for more
information. Note: It is recommended to check with the processor or

merchant service provider for guidance on what amount to set this value to.

Incorrectly setting this value can result in downgrades.

ExpDate String

The expiration date associated with the credit card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

GratuityAmount String

For use with Restaurant transactions only. The actual gratuity amount for

a Sale with Gratuity (action code 14) , Gratuity (action code 13) , or Post-

Authorization (action code 5) transaction. See the section Restaurant
Transactions (see page 104) for more information.

IDNumber String

Only required for Voyager cards, dependant on Restriction Code. Four to six

digits. Note: Only used for Pre-Authorization transactions
Update: Beginning with PCCharge version 5.8, this is also used for Citi©

Private Label.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where

PCCharge is running. Defaults to 127.0.0.1

ItemID String

The Item ID for the transaction. This field is only used for Chase Paymentech
(GSAR) and can store five (5) four-digit codes that are defined by Chase

Paymentech. Example: If the ItemID is set to 00010002000300040005, it

stores 5 item IDs (0001, 0002, 0003, 0004, and 0005). These numbers

must be obtained from Chase Paymentech.

LastValidDate String

The last year that will be considered a valid expiration date. Currently, the
default value in the control is ―09‖. It is recommended that a setting is

provided by which the end-user can change this property; otherwise, in the

future, end users will require a new control to be distributed to resolve

expiration date issues. Length: 2 digits. Format: YY Example: If

LastValidDate is set to 05, then cards between 06 and 99 are considered
to be 1906 to 1999, and cards between 00 and 05 are 2000 to 2005.

Manual Long

Flag that indicates whether the transaction was manually entered or swiped.

If the transaction was swiped, the Track property must also be set. Valid

values: 0 = manual transaction, 1 = swiped transaction

MCSC String

The Multiple Count Sequence Count. This is the total number of installments

that will be charged in a non-restaurant recurring billing scenario. Max

Length: 2 characters. Example: If there are 5 payments to be made, set this

property to ―5‖.

PCCharge Version 5.9.0
Updated 2/8/2010

 193

Property Data Type Description - Charge.OCX Properties

MCSN String

In a restaurant environment: The server or cashier id. Max Length: 2. This

field should be passed for reporting and reconciliation purposes. See the
section Restaurant Transactions (see page 104) for more information.

Processor specific note: The Server ID is required for AMEX card

transactions. Also required when using the processor NB and GSAR in

restaurant business type.

In a non-restaurant environment, this field is the Multiple Count Sequence

Number. This is the transaction number within the total number of payment
installments in a recurring billing scenario. Max Length: 2 characters.

Example: If there are 5 payments to be made and this transaction is the first

transaction, set this property to ―1‖. The first transaction should also
include the CVV property, but this value should not be stored or sent for

subsequent transactions.

Member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MSMQEncrypted Boolean No longer supported

MSMQOffSite Boolean No longer supported

MSMQServerName String No longer supported

MSMQTransaction Boolean No longer supported

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this
value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

Odometer String
The odometer reading. Only required for Fleet One (7 digits), Voyager (7

digits), and Fuelman (6 digits) cards.

Offline String

Flag that indicates whether PCCharge should process the transaction offline.

If the offline flag is set, PCCharge will put the transaction into a .BCH file
that resides in the PCCharge directory for importing at a later time. The file

can only be imported from the PCCharge GUI. Valid values: 1 = TRUE, 0
= FALSE

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction

response file (.oux file). The default is 0.25 seconds. This value should only
be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing
transactions.

Path String

For use with File_Tranfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing

the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

PeriodicPayment String

Flag that indicates whether the transaction is a recurring transaction. Valid

values: 1 = TRUE, 0 = FALSE Note: If periodic payment is set to true,
the recurring billing properties must also be set to achieve the best

processing rates.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

PCCharge Version 5.9.0
Updated 2/8/2010

 194

Property Data Type Description - Charge.OCX Properties

Processor *** String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

ProductDetailAmount_XX String

Note: Only required for the processor NBS. This is the total dollar amount
for PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.

For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a PRODUCT_DETAIL_UNIT_PRICE_1 =

$2.00, therefore the PRODUCT_DETAIL_AMOUNT_1 = $4.00

ProductDetailCount String

Note: Only required for the processor NBS. All card types are configurable

except for Fleet One which is limited to 7 records. Only 1 – 10 records are

currently supported through PCCharge for all card types.

ProductDetailCode_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

ProductDetailQuantity_XX String
Note: Only used for the processor NBS. This is the unit price for
PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and

Fuelman. Currently, PCCharge will support 1 – 10.

Reference String

The reference number from the original transaction (returned by the

processor). Set this property only if processing a Post-Authorization and the
Post-Authorization is being used to add a Voice-Authorization to the batch or

to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The Reference property does not need to be
set if the Post-Authorization completes a standard Pre-Authorization using

the TroutD value of the Pre-Authorization. See the section Follow On
Transactions for more information (see page 70). Max Length: 8 characters.

Note: NBS/ Fleet One cards require a Reference Number to be sent with
each transaction. This is a minimum of 2 digits and a max of 15. This must

be all numeric.

RestrictionCode String

Only required for Voyager cards. This is used to determine the level of

identification and which fields are required. Two digits.
Valid Values:

00 - No ID Number or Odometer required. Fuel and Other allowed.

01 - No ID Number or Odometer required. Fuel only allowed.

10 - ID Number only required. Fuel and Other allowed.
11 - ID Number only required. Fuel only allowed.

20 - Odometer only required. Fuel and Other allowed.

21 - Odometer only required. Fuel only allowed.
30 - ID Number and Odometer required. Fuel and Other allowed.

31 - ID Number and Odometer required. Fuel only allowed.

Note: Required for both manual and swiped transactions.

RFID String
Set to 1 if card information was read from RFID (Radio Frequency
Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

Store String

Flag indicating whether a Voice Authorization transaction should be stored.

This flag should only be submitted when performing a Post-Authorization
transaction (action code 5) that includes an authorization code from the

voice operator. For more information on stored Voice-Authorizations, see

page 92. Valid Value: 1 - Store the Voice Authorization transaction.

Street String

The cardholder's billing street address. The Street property is used for

address verification. Address verification can only be performed on non-
swiped transactions. For FDC: Use first 5 digits only. Note: For manually

keyed transactions, Street is required to qualify for the lowest transaction
rates. Max Length: 20 characters

Citi© - When used with Citi Plan PO Box‘s are not allowed.

TaxAmt String

The tax amount. This is the portion of the amount that is tax. Providing the

tax amount is required to obtain the best rate on commercial card
transactions. Max Length: 9 characters (including the decimal). Format:

DDDDDD.CC. The transaction's action code must indicate that it is a
commercial transaction. Tax amount should be included in the amount field.

PCCharge Version 5.9.0
Updated 2/8/2010

 195

Property Data Type Description - Charge.OCX Properties

TaxExempt String

Tax Exempt Flag. This flag is used to indicate if the purchase is tax exempt.

Used only for Commercial Card Transactions. Valid Values: 1 – Purchase is

tax exempt; 0 – Purchase is not tax exempt.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: For manually

keyed transactions, Ticket is required to qualify for the lowest transaction

rates. Note: When using NDC, lower case characters must not be used in the
ticket number. Note: When using Elavon (NOVA), ticket numbers can only be

alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly
could cause reconciliation issues and problems such as double-charging a

customer‘s account.

TotalAmount String No longer needed

Track String

The track II data captured from the magnetic strip of the credit card. The

track II data is required to ensure the lowest per-transaction rate from the

processing company when performing swiped transactions (Retail and
Restaurant). Sending the track II data is not allowed if the merchant's

industry type is MOTO or eCommerce. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

Alternatively, the GetParseData method can be used to parse the track

data and set the Card, ExpDate, and Track properties automatically.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to
it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

VehicleID String
Only required for Wright Express cards (5 digits) and Voyager cards (8 digits).
Note: Required for both manual and swiped transactions.

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

Zip String

The cardholder's zip code. The Zip property is used for address verification.
Max Length: 9 digits. Address verification can only be performed on non-

swiped transactions. Note: For manually keyed transactions, the Zip is
required to qualify for the lowest transaction rates. Note: For manually

keyed transactions, the Zip is required to qualify for the lowest transaction
rates. Note: If submitting the 9-digit zip, do not include the dash.

Citi© - When used with Citi Plan the zip is limited to 5-digits.

CfgType Long

The database archive configuration type setup in PCCharge. Valid value:
Currently, only 0 is supported.

0 = CFG_TXN_ARCHIVE = Configure Transaction Archive. Use action code ZC.

CfgEnabled Boolean
Enable or disable current database archive configuration (1 = Enable, 0 =
Disable).

CfgPath String
Specify path for saved output files (Example: backed up transaction

database). Must end with a backslash ―\‖.

CfgSizeLimit String
Transaction archive size limit for GUI archive prompting and validation.
Specified in megabytes.

PCCharge Version 5.9.0
Updated 2/8/2010

 196

Property Data Type Description - Charge.OCX Properties

CfgKeepDays String

Transaction archive preservation range. All transactions within the past

number of ―keep days‖ will remain in the pccw.mdb database following a
transaction archive command.

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

NewCashierPassword String

Submit a new password for the Target Cashier.
Note: case-sensitive

Must be complex:

 minimum 7 characters

 must have at least one upper case character

 one numeric character

 one special character (e.g., @, $, %, etc.)
NOTE: See Cashier Permissions on page 75 for an example.

NewCashierConfirmPassword String

Resubmit the password for verification. Note: Must match the original

NewCashierPassword

NOTE: See Cashier Permissions on page 75 for an example.

AddCashier1 String
Allows the integrator to submit new cashiers up to 5 at a time. Requires 3

Name Value pairs to be entered for each AddCashier tag submitted.
CASHIER_NAME <Name>

PASSWORD <Password>

PERMISSIONS <Permissions>

Example:

<ADD_CASHIER_1>CASHIER_NAME CreditR PASSWORD CreditR123%

PERMISSIONS 10000|000|000|000|000000000000|0000|000000

</ADD_CASHIER_1>

NOTE: See Cashier Permissions on page 75 for an example.

AddCashier2 String

AddCashier3 String

AddCashier4 String

AddCashier5 String

TargetCashierName String
Submitted when performing a function to edit a cashier‘s settings. This
specifies which cashier‘s information to alter.

NOTE: See Cashier Permissions on page 75 for an example.

CustomerFirstName
1

String Applicant‘s first name.

MiddleInitial
1
 String Applicant‘s middle initial.

CustomerLastName
1
 String Applicant‘s last name.

Suffix
1
 String Applicant‘s suffix. (Ex. M.D., Ph.D, Jr.)

AptSuite
1
 String Applicant‘s apartment or suite number.

CustomerCity
1
 String Applicant‘s city.

State
1
 String Applicant data. (Ex: GA, FL, MA…)

Email
1
 String Applicant data. (Ex: XXX@XX.XXX)

Phone_Number
1
 String Applicant data. Format xxxxxxxxxx 10-digits No Dashes

SSNum
1
 String Applicant data. Format xxxxxxxxx 9-digits No Dashes

Birth_Date
1
 String Applicant data. Format is MMDDYYYY.

EmpName
1
 String Applicant data. Employer name.

WorkPhoneNumber
1
 String Applicant data. Employer phone number.

HomeOwner
1
 String

Applicant data.

Format:

'O' = Own

'R' = Rent
'B' = Board

'P' = Live w/ parents

'M' = Military

AnnualIncome
1
 String

Applicant data. Format: Up to 6 digits. Whole dollar amount with no
decimals.

PhotoIDState
1
 String Applicant data. (Ex: GA, FL, MA…)

CorrelationUID
1
 String Received as a response to a Credit App (P3)

PendingNumber
1
 String Received as a response to a Credit App (P3)

mailto:XXX@XX.XXX

PCCharge Version 5.9.0
Updated 2/8/2010

 197

Property Data Type Description - Charge.OCX Properties

ReplyFlag
1
 Boolean

Reply notification.

Format:

Y = Accept

N = Decline

SourceCode
1
 String

Citi Plan

Format:

Opt In – ―AP‖

Opt Out – ―AO‖

IDType
1
 String

Applicant data. Type of identification being submitted.

Format:
‗D‘ – Driver‘s License

‗O‘ – Other

FraudFlag
1
 Boolean

Code 10.

Values are 1 or 0: 1 = True, 0 = False

HealthCareAmount

String
Total Healthcare Amount. This amount must be greater than or equal to the
sum of the other amount categories. Max: 12 - digits

Format: DDD.CC

PrescriptionAmount
#
 String

(Optional) Total amount of the prescription-related healthcare expenses in

this transaction. Max: 12 - digits
Format: DDD.CC

VisionAmount
#
 String

(Optional) Total amount of the vision-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

ClinicAmount
#
 String

(Optional) Total amount of the clinic-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

DentalAmount
#
 String

(Optional) Total amount of the dental-related healthcare expenses in this
transaction. Max: 12 - digits

Format: DDD.CC

TransitAmount
#
 String

(Optional) Reserved for future use. Max: 12 - digits

Format: DDD.CC

CopayAmount
#
 String

(Optional) Reserved for future use. Max: 12 - digits
Format: DDD.CC

FSA
#
 Boolean

Indicates the transaction is FSA. This will bypass PCCharge BIN checking as

PCCharge will assume that the POS has verified that this card has met the

BIN requirements for an FSA transaction.
1 = True, 0 = False

Note: If this is not passed it defaults to False.

 These properties are the minimum required to process a Sale or Pre-Authorization transaction.

 These properties are additional requirements beginning in PCCharge version 5.8 and are in addition to the preceeding

requirements for a Sale or Pre-Authorization transaction. These are only necessary if taking advantage of the new PCI Cashier

Changes.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the Processor and MerchantNumber
properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The

―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, Processor and

MerchantNumber should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page
70) for more information.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page 115.

Additional tags used to process FSA/HRA transactions. For more information please see the section about FSA on page 98.

PCCharge Version 5.9.0
Updated 2/8/2010

 198

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

PCCharge Version 5.9.0
Updated 2/8/2010

 199

Charge.OCX Methods

Method
Returned

Value
Description - Charge.OCX Methods

Abort Boolean

The Abort method attempts to cancel the transaction in progress and will

return a Boolean value that indicates whether or not the transaction was
canceled. Note: This method is not available when integrating using FoxPro.

Use the Cancel method instead.

About MsgBox The About method will display the About box associated with the control.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be

canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is
recommended that this method be called:

a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called
c. prior to running the next transaction

CommercialCardType String

The CommercialCardType method is used to determine whether or not a

credit card is a commercial card. CommercialCardType requires that a
string parameter, the credit card number, is passed when calling the

method, that the Path property is set to a valid PCCharge directory, and

that a valid Bin.mdb database resides in that directory.

CommercialCardType returns TRUE if the BIN range of the card appears in

the Bin.mdb database, FALSE if it does not.

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered and the GetErrorDesc method will give a brief description of the
error. Consult the section System Error Codes and Descriptions for a list of

valid error codes and descriptions that will be returned (see page 148). *Not

for use with TCP/IP CommMethod.

GetAcctDataSrc String Returns the entry method of the transaction.

GetACI String

Returns the VPS indicator to indicate wherever the card is a VISA, MC or

AMEX card PS2000 data. This value is not returned by all processing

companies.

GetAddText1 String
Only supported on Fleet One, this field contains miscellaneous additional text
returned from host. Currently PCCharge will support GetAddText1-

GetAddText4.

GetApproved Boolean

The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned. An

―APPROVED‖ response indicates that a Pre-Authorization has been approved,
but not placed in the open batch.

GetAmountDue String

Returns the amount due, only for Elavon (NOVA) pre-paid and FSA
functionality. Format is DDD.CC

Note: ―Enable Pre-Paid Cards‖ option within PCCharge MUST be checked for

this feature to work. The option is located under Setup>Credit Card
Company>Extended Data and only with the Credit Card Company set to

Elavon (NOVA). This option is only configurable in PCCharge version 5.7.1

release I sp9a and above.

Note: For this to work with FSA transactions, one must enable FSA and

Partial Auth within the Extended Data Screen for supported processors.

GetAuth String

For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was

rejected.

GetAuthAmount String
Used in partial redemption transactions where only part of the amount was
authorized. Returns the actual authorized amount.

PCCharge Version 5.9.0
Updated 2/8/2010

 200

Method
Returned

Value
Description - Charge.OCX Methods

GetAVS String

Returns the AVS response code from the issuing bank. If performing Address
Verification on card-not-present transactions, this code indicates how well

the AVS information passed in matches what the issuing bank has on file for

the cardholder. Consult the section DevKit Constants for a description of

values that may be returned (see page 141).

GetCCAvailBalance String

Pre-paid credit cards with Elavon (NOVA) - Returns the PrePaid card

balance.

FSA – Returns the available balance on the FSA/HRA card.

Format: DDD.CC

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result in
a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been
approved, and that the transaction has been placed in the open batch.

GetCardIDCode Boolean Returns a code that is used to verify the identity of the cardholder.

getCommercialCardType String

The getCommercialCardType method requires a string parameter, the
credit card number, and will determine the credit card number‘s commercial

card type. This method requires that the Path variable be set to a valid
PCCharge directory and it uses the Bin.mdb database in the PCCharge

directory to determine the commercial card type.

Valid return values:

B – Business

P,L,G -- Purchase

C – Corporate

F – Fleet

Example: getCommercialCardType(“4055011111111111”) will return

―P‖.

GetCreditCardIssuer String

The GetCreditCardIssuer method returns the abbreviation of the credit

card issuer's name for the card number that is present in the Card property.
Consult the section DevKit Constants for a description of values (see page

141).

GetCreditCardType String

The GetCreditCardType method returns either the abbreviation of the

credit card issuer of the card that is present in the Card property, or the

optional card parameter that is passed to the GetCreditCardType method.

Consult the section DevKit Constants for descriptions of values (see page

141). (GetCreditCardType is the same as GetCardIssuer).

GetCurrentDBSize String Current transaction database size in bytes.

GetConfigDBSize String Current configured size limit for transaction archive in bytes.

GetCVV2 String

Returns the CVV2/CVC2/CID response code from the issuing bank. If
performing CVV2/CVC2/CID validation on card-not-present transactions, this

code indicates if the CVV2/CVC2/CID code passed in matches what the

issuing bank has on file for the cardholder. Consult the section DevKit
Constants for a description of values that may be returned (see page 141).

GetDCAvailBalance String
Returns the available balance on pre-paid debit cards. Only for pre-paid

debit cards with Elavon (NOVA).

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see
page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetEstGratuityAmount String
The GetEstGratuityAmount echoes the estimated gratuity from the
original transaction.

GetGratuityAmount String
The GetGratuityAmount echoes the gratuity amount from the original
transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 201

Method
Returned

Value
Description - Charge.OCX Methods

GetHostType Integer

The GetHostType method returns an integer that indicates if a processor /

merchant number is Host based or Terminal based. GetHostType requires
three parameters:

1) Processor code - Consult the section DevKit Constants (see page

141) for a list of valid processor codes
2) Merchant account - Must be a valid merchant account set up in

PCCharge

3) TID type - Valid Values for TID type: 0 – Credit; 1 – Check; 2 –

Debit; 3 – EBT; 4 – GiftCard

GetHostType will return one the following values based on the parameters

passed in:

0 – The processor is Host based

1 – The processor is Terminal based

-1 – The processor is a Hybrid (supports both Host and Terminal processing)
or invalid processor / merchant number.

Example: .GetHostType(“VISA”, “999999999911”, 0) will return 0
Note: Chase Paymentech (GSAR), Elavon (NOVA), and FDMS South / NaBanco

(NB) are considered hybrid processors. GetHostType will return a -1 for
these processors.

GetIND String

Returns the IND code. The IND code is a transaction description code and an

Interchange compliance field. This value is not returned by all processing

companies.

GetItemID String The GetItemID echoes the item ID from the original transaction.

GetMerchantInfo String

The GetMerchantInfo method returns a string containing all of the
merchant numbers and processors set up in PCCharge. The string will also

indicate whether the processor is Host based (H), Terminal based (T), or a

hybrid (Y). The string will begin with STX and will end with ETX. GS will

separate each record, and FS will separate fields within a record. Example:
<STX>CES <FS>000000927996296767<FS>T<GS>GSAR<FS>

999999999999519<FS>T<GS>VISA<FS>999999999911<FS>T<ETX>

Refer to the section Multi-Merchant Support (see page 68) for more

information on the GetMerchantInfo method.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetMSI String
Returns the Market Specific Indicator. This value indicates the transaction‘s
market segment. This value is assigned by the card associations and is not

returned with all transactions.

GetParseData String

The GetParseData method will parse a string (containing credit card track

data) passed to it and populate the Card, ExpDate, Member, and Track

properties with the appropriate data. GetParseData will return an integer

indicating its success. Valid return values: 0 (error parsing data), 1 (track I

successful), or 2 (track I & II successful).

GetPLProcessor String
Retrieves the private label Processor ID currently setup in PCCharge. The
.path property must be specified.

GetPLMerchantNumber String
Retrieves the private label Merchant Number currently setup in PCCharge.

The .path property must be specified.

GetPCard String

The GetPCard method returns the PurchaseCard field from the .oux file.

Not all processing companies support this field. Valid values: 1 = Purchasing

card, 0 = Otherwise

GetPEM String
Returns the Point of Entry Mode that is associated with the transaction. This

value is not returned by all processing companies.

GetPS2000 String

PS2000 Data. This data will be as received during the original authorization

processing. It will not be present for offline transactions. PS2000 Data is a

variable; it will either be one character or up to 20. It is data concerning the

card type and transaction that the processor will send back during the
authorization process. This value is not returned by all processing

companies.

GetRecordCount String The number of records matching the inquiry

PCCharge Version 5.9.0
Updated 2/8/2010

 202

Method
Returned

Value
Description - Charge.OCX Methods

GetRefNumber String

Returns the reference number associated with the transaction. The
reference number is assigned by the card associations. The reference

number is used to help identify the transaction and is useful for the

cardholder and merchant when doing research. This value is not returned

with all transactions.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

GetResponseCommercialType String
Returns the type of commercial card that was used for the transaction. This

value is not returned by all processing companies.

GetResponsePurchaseCardType String
Returns a flag indicating whether the processor indicated whether the card
was a Purchasing Card or not. This value is not returned by all processing

companies. Valid values: 1 = Purchasing Card, 0 = Otherwise

GetRestrictCode String Note: Only supported on Fleet One. The product restriction code.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetRET String
Returns the Retrieval reference number. This value is not returned by all

processing companies

GetTraceNumber String
Returns the trace number from the processor. Only for pre-paid credit cards
with Elavon (NOVA).

GetTBatch String
Returns the active batch number for the transaction. This value is not

returned by all processing companies.

GetTerminationStatus String

Retrieves Termination Status which returns a ―6‖ upon successful
transaction. If anything other than a ―6‖ is returned there may be an issue

with the settlement file and should be investigated. This applies to : GSAR

and NBS

Response:
6 = Successful Transaction

GetTDate String
Returns the date that the transaction was processed. This value is not

returned by all processing companies.

GetTI String
This will indicate the transaction Identifier for VISA or AMEX, it will also
return the MC Bank Net reference if the card is a MasterCard. This value is

not returned by all processing companies.

GetTicket String

Returns the ticket number or invoice of the transaction. This value is echoed

back from the original transaction or is generated by PCCharge if one is
required to complete the transaction.

GetTICode String
Returns the validation code for VISA or the Bank Net Date if the card is a

MasterCard.This value is not returned by all processing companies.

GetTIM String
Returns the Time of the transaction. This value is not returned by all

processing companies.

GetTitem String

Returns the Transaction Item number or the number that is associated with

the transaction in the settlement file. This value is not returned by all
processing companies.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTransRecord String
Contains nested XML tags providing information on transaction(s) pulled from

Trans table in the PCCharge database (pccw.mdb)

GetTransactionReferenceNumb

er
String

Returns the transaction reference number from the processor. Only for pre-

paid credit cards with Elavon (NOVA).

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 203

Method
Returned

Value
Description - Charge.OCX Methods

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can

be used to view the results of a Transaction Inquiry (ZI) transaction. Refer
to the section Transaction Inquiry (see page 127) for more information. The

text can also be used by integrators that wish to parse the results of the
transaction themselves or for troubleshooting purposes. Refer to the section

File Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file

associated with the transaction. The request (.inx) file contains XML string
data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions. *Not for use with TCP/IP CommMethod.

Send Integer

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the control will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the

programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only—do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean

The ValidCardLength method returns TRUE if the card is of the correct

length, or FALSE if it is not. ValidCardLength has an optional string
parameter in which a card can be passed. If that parameter is blank,

ValidCardLength will analyze the value set in the Card property.

ValidDate Boolean
The ValidDate method returns TRUE if the expiration date provided in the

ExpDate property is valid, or FALSE if it is not.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

PCCharge Version 5.9.0
Updated 2/8/2010

 204

Method
Returned

Value
Description - Charge.OCX Methods

VerifyCreditCard Boolean

The VerifyCreditCard method returns TRUE if the credit card number‘s
format is valid and meets the requirements set forth by the credit card

companies, FALSE if it does not. If FALSE is returned, use the

GetErrorCode and GetErrorDesc methods to determine the reason for

failure. VerifyCreditCard has an optional string parameter in which a

credit card number can be passed. If the parameter is left blank,

VerifyCreditCard will analyze the value set in the Card property.

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in

the ExpDate property is correct and in the right format, or FALSE if it is

not. VerifyExpDate calls the ValidDate function to validate the

expiration date. If FALSE is returned, check the error code to determine the
reason for failure. Consult the section System Error Codes and Descriptions

for a list of valid errors that will be returned (see page 148).

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.
Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property
must be set before calling this Method.

VerifyProcessor Boolean No longer supported

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

GetPasswordExpiry String Returns MMDDYY when the cashier password will expire.

GetCorrelationUID
1

String Returned from Citi, needed for Counter Offer Submission.

GetPendingNumber
1
 String Returned from Citi, needed for Counter Offer Submission.

GetReplyFlag
1
 String „Y‟ or „N‟ sent to Citi to notify message is a reply to an offer.

GetOpenToBuy
1
 String

Only present in the response if the ―Display OTB‖ is turned ON. Decimal is

included.

GetCreditLimit
1
 String Only present the in the response. Retrieves credit limit.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page 115.

Charge.OCX Events

Event Description – Charge.OCX Events

Error
The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned (see page 148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has processed

the transaction successfully and has placed a file with the extension of .oux in the PCCharge directory. The name

of the .oux file will be what was set in the User property of the transaction request. Call the GetResult

method to determine whether or not the transaction was approved. A list of valid results can be found in the
Transaction Result Constants section (see page 154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send

method.

PCCharge Version 5.9.0
Updated 2/8/2010

 205

PCCharge Version 5.9.0
Updated 2/8/2010

 206

Debit.OCX

Debit.OCX provides integrators with properties and methods used to submit debit card and EBT

transactions to PCCharge. To use Debit.OCX to integrate transaction processing, follow the procedure

below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Retrieve pertinent data, such as the PIN, the Key Serial Number (if DUKPT), etc., from the PINpad.

Device.OCX may be used to collect data from the PINpad. See page 240 for more information on

Device.OCX.

3. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
Debit.OCX properties table are the minimum required to process a Debit Sale transaction.)

4. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

5. Wait for the Error or Finish event to occur.

6. Call the various Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

7. Call the DeleteUserFiles method to delete all files related to the transaction.

8. Call the Clear method to reset all the properties and methods related to the transaction or
destroy the object.

When processing debit cards, a PINpad is required to allow the customer to enter their PIN. In
addition, debit card information is always collected via a card swipe device, never via keyboard entry.
Because of this, a card reader is also required. (Some EBT transactions can be manually entered).

Refer to the Device.OCX section (see page 240) for information on integrating to a PINpad device.

Device.OCX gives the application the ability to retrieve the PIN from the PINpad and use it to process

debit card transactions.

When processing U.S. debit card transactions, merchants have the option of allowing the customer to
receive cash back on a transaction. For instance, the customer purchases $50 of products and wants

$25 cash back, set the Amount to 50.00 and CashBack to 25.00. This will withdraw a total of $75
from the debit card account, $50 for the products and $25 for cash to give to the customer.

Consult the Pseudo-code section (see page 156) for an example that may be followed when using the

Debit.OCX to perform transaction processing.

PCCharge Version 5.9.0
Updated 2/8/2010

 207

For information on integrating Canadian Debit, see the section Canadian (Interac) Debit Transactions
(see page 112).

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 208

Debit.OCX Properties

Property Name Data Type Description – Debit.OCX Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

AuthCode String
EBT Only: For an EBT Post (Prior Auth Sale) or Force transaction: The

Authorization code from the original voice authorization.

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the

transaction is being processed for payment of a bill (ultilty, monthly gym
dues, etc.) Valid values:

0 – Non-Bill payment transaction

1 – Bill payment transaction

Card String

The Debit/EBT card number that will be used when processing the
transaction. Max Length: 20 characters. Example: 5424180279791765

NOTE: Is it the integrator‘s responsibility to remove spaces in the card

number if there are spaces in the Track II card number data.

CashBack String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total

amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some debit processors do not support the

cash back feature.

Command String
Because the Action property is defined as ―long‖, this property was added
to allow action codes that contain strings. This property is only used for

action code M1 (Key Change Request).

CommMethod Enum

Specifies which communication method will be used.
0 – File_Transfer

1 – TCP/IP

Please refer to page 20 for a description of these methods. If TCP/IP is
selected, the IPAddress, Port and EnableSSL properties must also be set. If

File_Transfer is set then the Path property must be set.

DebitType String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Set this to the bank account type that the customer
specified when entering transaction data into the PINpad.

 Valid Values: ―Chequing‖ or ―Savings‖

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.
Note: See SSL Information on page 70 for more information.

ExpDate String

The expiration date associated with the Debit/EBT card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

Set this property if there is an expiration date associated with the Debit/EBT
card.

FoodStamp Boolean
EBT Only: Indicates what type of EBT transaction will be performed. Valid

Values: 1 – Food stamp transaction; 0 – Cash benefits transaction

Gratuity String
Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. This is the Gratuity Amount of the transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 209

Property Name Data Type Description – Debit.OCX Properties

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where

PCCharge is running. Defaults to 127.0.0.1

KeySerialNumber String

If a Key Serial Number is returned from the PINpad, this property should be
populated with that number. If processing transactions with a PINpad using

DUKPT encryption, this value is sixteen or twenty characters long

(depending on the processor‘s encryption). The PCCharge DevKit provides
several tools for retrieving data from PINpads. If the PCCharge integration

method chosen doesn‘t support these tools or the tools do not support the

PINpad being used, a direct interface to the PINpad must be written by the

integrator. If processing transactions with a Verifone SC5000 PINpad, set
this property to the Chip Serial Number of the PINpad.

LanguageCode String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Set this to the language that is indicated by the
Language Code that is encoded in the track II data on the customer‘s card.

Valid Values:

―English‖ or ―French‖ (pass in the literal string)

MACData String
Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Set this to the MAC Block value returned by the

PINpad.

Manual Boolean

Flag that indicates whether the transaction was swiped or manually entered.

This property must be set to 1 (swiped) for Debit transactions or swiped EBT

transactions. If the transaction was swiped, the Track property must also

be set. If performing a manually keyed EBT transaction, such as a Force or
Voucher, set this property to 0 (manually entered).

Member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Debit Card Setup window or EBT Card
Setup window of PCCharge. Max Length: 32 characters. This value can be

alphanumeric.

OrigPurchData String

The Original Purchase Data. Used when performing a Debit Return with the

processors TSYS, Heartland, RBS WorldPay, and NPC. This is the original
transaction date. Format: DDMMhhmm

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction

response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be
caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing
transactions.

Path String

For use with File_Tranfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing
the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a "\".

Pin String

The encrypted PIN block that is retrieved from the PINpad. The PIN is

provided to the processor for verification. Length: 16 characters. The

PCCharge DevKit provides several tools for retrieving data from PINpads. If
the PCCharge integration method chosen doesn‘t support these tools or the

tools do not support the PINpad being used, a direct interface to the PINpad

must be written by the integrator.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

PCCharge Version 5.9.0
Updated 2/8/2010

 210

Property Name Data Type Description – Debit.OCX Properties

Processor *** String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

ProductDetailAmount_XX String

Note: Only required for the processor NBS. This is the total dollar amount
for PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.

For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a PRODUCT_DETAIL_UNIT_PRICE_1 =

$2.00, therefore the PRODUCT_DETAIL_AMOUNT_1 = $4.00

ProductDetailCount String

Note: Only required for the processor NBS. All card types are configurable

except for Fleet One which is limited to 7 records. Only 1 – 10 records are

currently supported through PCCharge for all card types.

ProductDetailCode_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

ProductDetailQuantity_XX String
Note: Only used for the processor NBS. This is the unit price for
PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and

Fuelman. Currently, PCCharge will support 1 – 10.

Reference String

Required by some processors for returns. The reference number is returned

with the original transaction. Note: NBS/ Fleet One cards require a
Reference Number to be sent with each transaction. This is a minimum of 2

digits and a max of 15. This must be all numeric.

RFID String

Set to 1 if card information was read from RFID (Radio Frequency

Identification) device. If card was read from from RFID, track data must be
populated and manual flag must be set to 1. Set to 0 otherwise.

ShiftID String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. The Shift ID. This value is optional. Format:

Alphanumeric Max Length: 1 character.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,
lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly
could cause reconciliation issues and problems such as double-charging a

customer‘s account.

Track String

The track II data captured from the magnetic strip of the card. The track II

data is required for Debit transactions and for swiped EBT transactions. Max

Length: 40 characters.

Example: 5424180279791765=08121011000001234567
Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

TransNum String No longer needed

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to
it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

Voucher String
EBT Only: The voucher number for an EBT force transaction. The voucher is
provided by the processor at the time of authorization and must be supplied

to clear the voucher.

PCCharge Version 5.9.0
Updated 2/8/2010

 211

Property Name Data Type Description – Debit.OCX Properties

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

 These properties are required to process a Debit Sale transaction.

 These properties are required to process a Canadian Debit Sale transaction using Global Payments East (NDC) and the SC5000

PINpad.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the Processor and MerchantNumber
properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The

―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, Processor and

MerchantNumber should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page
70) for more information.

Debit.OCX Methods

Method Name
Returned
Value

Description - Debit.OCX Methods

About Boolean The About method will display the About box associated with the control.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is
recommended that this method be called:

a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called

c. prior to running the next transaction

Connect Boolean No longer supported

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response

files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be

called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered and the GetErrorDesc method will give a brief description of the
error. Consult the section System Error Codes and Descriptions for a list of

valid error codes and descriptions that will be returned (see page 148). For
use with file transfer CommMethod only

Disconnect None No longer supported

GetApproved Boolean
The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

GetAuxRespCode String When using the SC5000 PINpad, returns the ISO response code

GetAvlBalance String
EBT Only: The GetAvlBalance method returns the available balance on the
EBT card. This value is not returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 212

Method Name
Returned

Value
Description - Debit.OCX Methods

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result in

a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been

approved, and that the transaction has been placed in the open batch.

GetEBTCashBalance String
EBT Only: Returns the remaining balance on a Cash Benefits card. This value
is not returned by all processing companies.

GetEBTFoodBalance String
EBT Only: Returns the remaining balance on a Food Stamp card. This value

is not returned by all processing companies.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see
page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetMSI String
For Debit Master Session: Returns the new master key (if one exists) sent by
the processor that should be passed to the PINpad.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetPOSSequenceNumber String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Returns the current POS Sequence Number for the

PINpad. The Path property must be set to the PCCharge directory and the

PINpad‘s Chip Serial Number must be passed as a parameter when calling the

GetPOSSequenceNumber method.

GetRefNumber String

Returns the reference number associated with the transaction. The

reference number is used to help identify the transaction and is useful for
the cardholder and merchant when doing research. This value is not

returned with all transactions.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetSurchargeAmount

String

For GSAR Debit US only: Returns the surcharge amount that was charged by

the bank when using debit with GSAR. This value has to be called in order for
the developer to know how much the card was actually charged in addition

to the transaction amount and cash back.

GetTermFee String

For GSAR EBT: Returns terminal fee sent back by processor. The terminal fee

is any surcharge defined and set up by Chase Paymentech and the EBT
network of the cardholder‘s EBT card.

GetTI String

For Debit Master Session: Returns the new working key (if one exists) sent

by the processor that should be passed to the PINpad for the next

transaction. For GSAR EBT: Returns the ledger balance.

GetTraceNum String
For GSAR EBT: Returns the trace number sent back by processor. The trace
number is a reference number generated by Chase Paymentech.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 213

Method Name
Returned

Value
Description - Debit.OCX Methods

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file
contains XML string data. The text that is retrieved can be used by

integrators that wish to parse the results of the transaction themselves or for

troubleshooting purposes. Refer to the section File Method (see page 478)
for a description of the tags and values that are returned. Note: This

method must be called prior to calling the DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file
associated with the transaction. The request (.inx) file contains XML string

data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called
after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process

transactions. For use with File_Transfer CommMethod only

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the control will set the error code and

description, raise the Error event, and terminate processing. Consult the
section System Error Codes and Descriptions for a list of valid errors that

will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the
programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation

assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only-- do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 214

Debit.OCX Events

Event Description - Debit.OCX Events

Error

The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be returned (see page 148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send

method.

PCCharge Version 5.9.0
Updated 2/8/2010

 215

Check.OCX

Check.OCX provides integrators with properties and methods used to submit check verification,

guarantee, and conversion transactions to PCCharge. To use Charge.OCX to integrate transaction
processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed. (The

properties marked with a in the Check.OCX properties table are the minimum required to
process a check verification transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is

passed as a parameter to activate the XML message format)

4. Wait for the Error or Finish event to occur.

5. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

6. Call the DeleteUserFiles method to delete all files related to the transaction.

7. Call the Clear method to reset all the properties and methods related to the transaction or
destroy the object.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 216

Check.OCX Properties

Property Name Data Type Description - Check.OCX Properties

Account_Number String
For Check, MICR, or Double ID: The account number that will be used when
processing the transaction. Max Length: 20 characters.

Action String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with
leading zeroes.

Example: Incorrect format ―0001.00‖.

AdjustmentAmount String

Total amount of the transaction after adjustment (i.e. if the original

transaction was $5.00 and it should have been $50.00, the adjustment
transaction request should have the .Amount property set equal to 50.00).

Birth_Date String

The date of birth of the check writer. Length: Exactly six characters.

Format: MMDDYY. The birth date is required for DL (Driver‘s License) check

transactions.

Cash_Back String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total

amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some processors do not support the cash

back feature.

CashierNum String The Cashier Number

CheckType String
Valid Values: 0 = Personal check, 1 = Business check Note: Used only for

processor TECK. Cannot be accessed in the PCCharge GUI.

Check_Number String
The check number of the check that will be used when processing the

transaction. Max Length: 10 characters.

CommMethod Enum

Specifies which communication method will be used.
0 – File_Transfer

1 – TCP/IP

Please refer to page 20 for a description of these methods. If TCP/IP is
selected, the IPAddress, Port and EnableSSL properties must also be set. If

File_Transfer is set then the Path property must be set.

CustomerCity String
The customer‘s city. Note: Used only for processor TECK. Cannot be

accessed in the PCCharge GUI.

CustomerName String
The first and last name of the customer. Note: Used only for processor
TECK. Cannot be accessed in the PCCharge GUI.

PCCharge Version 5.9.0
Updated 2/8/2010

 217

Property Name Data Type Description - Check.OCX Properties

CheckReaderCode Enum

Passes the type of Check Reader that is being used. Currently only used by

Telecheck and will only be set if TECK is the set processor. Cannot be
configured in the PCCharge GUI. Valid Values:

 1 - Magtek_mini_micr

2 - EnCheck_3000

3 - IVI_2500
4 - IVI_430

5 - IVI_431

6 - ICE_5700
7 - MagtekImager

8 - VeriFone_CR1000i

9 - Epson_TMH6000
10 - Epson_TMH6000Imager

11 - WelchAllyn_ScanTeam 8300

12 - VeriFone_CR600

13 - Magtek_Imager_with_Modem
14 - IBM_4610_reader_printer

15 - Ingenico_EC2600

16 - RDM_EC5000
17 - RDM_EC6000

18 - NCR_7158_and_7167

19 - LS_100
 20 - Magtek_Excella

 21 - Magtek_Excella_DLCapture_FBChkImg

 22 - Verifone_Model_Quartet

CustomerStreet String
The street address of the customer. Note: Used only for processor TECK.
Cannot be accessed in the PCCharge GUI.

DLTrackII String
The parsed TrackII data from the driver‘s license. Note: Used only for

processor TECK. Cannot be accessed in the PCCharge GUI.

Drivers_License String

The driver‘s license number of the individual writing the check. Max Length:

20 characters. The driver‘s license is required for DL (Driver‘s License)
transactions and when performing Double ID transactions.

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.
Note: See SSL Information on page 70 for more information.

IPAddress String
For use with TCP/IP CommMethod only. The IPAddress of the computer on

which PCCharge is running.

ManagerNum String
Used for BPS Double ID transactions. Optional Manager Number for manager
override.

Manual String
Flag that indicates whether the transaction was manually entered or swiped.

Valid values: 0 = manual transaction, 1 = swiped transaction

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Check Services Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MICR_DATA String
The raw MICR data from the bottom of the check. Used for conversion

transactions.

MICRStatus String

Valid Values: 15 = Valid read by MICR reader, 15I = Valid read by MICR reader

with imaging capability, 9 = Manual only Note: Used only for processor
TECK. Cannot be accessed in the PCCharge GUI.

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that
PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page

67). This Flag has no effect if processing will occur over IP or leased line.

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction
response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing

transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 218

Property Name Data Type Description - Check.OCX Properties

Path String

For use with File_Transfer Method only. The path to the directory in which

the PCCharge executable resides. This property must be set prior to calling

the Send, PccSysExists, and other methods that require accessing the

PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Phone_Number String

The phone number of the individual writing the check. Max Length: 7 digits.

Format: digits only. The phone number is required for COD (Checks On
Delivery).

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

Processor String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a
valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

Services ServicesType

The type of check verification to be performed. This property may be

specified by using a numerical value or an enumerated value if the
programming language being used supports enumerated values.

Valid values:

0 (MICR) – MICR

1 (COD) – Checks-On-Delivery

2 (DL) – Driver‘s License

3 (DI) – Double ID

4 (SPS) – Use if Check processor is SPS

Note: The value set in the Services property overrides the value set in the

Action property.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This
value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

State String
The state code of the state that issued the check writer‘s driver‘s license.

The state code is required for DL (Driver‘s License). Format: 2 characters.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,
lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly
could cause reconciliation issues and problems such as double-charging a

customer‘s account.

Transit_Number String

The Transit Routing Number / ABA number that will be used when processing

the transaction. This value indicates which bank issued the check. Max

Length: 9 characters. This value is required for MICR transactions and when

performing Double ID transactions.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

PCCharge Version 5.9.0
Updated 2/8/2010

 219

Property Name Data Type Description - Check.OCX Properties

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

Zip_Code String

The check writer‘s ZIP code. Max Length: 9 characters. Format: digits only.

This value is required for COD transactions. Note: If submitting the 9-digit

zip, do not include the dash.

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

Note: To perform Double ID, both the MICR_DATA and Drivers_License fields must be populated.

 These properties are required, regardless of service type.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators
review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

 COD -- required for Checks-On-Delivery
 DL -- required for Driver‘s License

 MICR -- required for MICR

Check.OCX Methods

Method Name
Returned
Value

Description - Check.OCX Methods

About None The About method will display the About box associated with the control.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is
recommended that this method be called:

a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called
c. prior to running the next transaction

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response

files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be

called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered and the GetErrorDesc method will give a brief description of the
error. Consult the section System Error Codes and Descriptions for a list of

valid error codes and descriptions that will be returned (see page 148). For
use only with File_transfer CommMethod

GetApproved String

The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned. An

―APPROVED‖ response indicates that a Verification has been approved.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was
rejected.

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a conversion transaction that

will result in a monetary transfer is approved or declined. A ―CAPTURED‖
response indicates that the transaction has been approved, and that the

transaction has been placed in the open batch.

PCCharge Version 5.9.0
Updated 2/8/2010

 220

Method Name
Returned

Value
Description - Check.OCX Methods

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see
page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetMerchantNumher String
Returns the merchant number that was specified in the MerchantNumber
property.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of
valid values and descriptions.

GetResultCode String
Returns the result code that is provided by the processor. This value is not

returned by all processing companies.

GetReturnCheckFee String
Returns the response from the processor which indicates the fee for returned
checks. Note: Only used for the processor TECK

GetReturnCheckNote String
Returns the response from the processor which displays a note for returned

checks. Note: Only used for the processor TECK

GetReference String
Returns the reference number that is provided by the processor. This value is

not returned by all processing companies

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

GetTraceID String Only for TECK. Returns the Trace ID associated with the transaction.

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can

be used by integrators that wish to parse the results of the transaction
themselves or for troubleshooting purposes. Refer to the section File

Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file

associated with the transaction. The request (.inx) file contains XML string
data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions. For use only with File_Transfer CommMethod

PCCharge Version 5.9.0
Updated 2/8/2010

 221

Method Name
Returned

Value
Description - Check.OCX Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the control will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the
programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only—do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.

Consult the section System Error Codes and Descriptions for a list of valid
errors that will be returned (see page 148).

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

Check.OCX Events

Event Description – Check.OCX Events

Error

The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be returned (see page 148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was

approved. A list of valid results can be found in the Transaction Result Constants section (see page
154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send

method.

PCCharge Version 5.9.0
Updated 2/8/2010

 222

EBT

The structure of EBT transactions is similar enough to debit transactions that both are handled via the

Debit.OCX. Consult the section Debit.OCX for more information on this ActiveX Control (see page
206).

PCCharge Version 5.9.0
Updated 2/8/2010

 223

GiftCard.OCX

GiftCard.OCX provides integrators with properties and methods used to submit gift card transactions

to PCCharge. To use GiftCard.OCX to integrate transaction processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
GiftCard.OCX properties table are the minimum required to process a Gift Card Redemption / Sale
transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is

passed as a parameter to activate the XML message format)

4. Wait for the Error or Finish event to occur.

5. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

6. Call the DeleteUserFiles method to delete all files related to the transaction.

7. Call the Clear method to reset all the properties and methods related to the transaction or

destroy the object.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

VeriFone Stored Value API (GAPI)

The VeriFone Stored Value API (GAPI) is a proprietary specification that allows for stored value card
processors to add themselves to PCCharge. Applications using GAPI can also integrate with PCCharge
using the various integration methods. For more information on adding a stored value card processor
to PCCharge, and how to obtain the VeriFone Stored Value API, please contact VeriFone sales at 1-800-
725-9264.

PCCharge Version 5.9.0
Updated 2/8/2010

 224

GiftCard.OCX Properties

Property Name Data Type Description – GiftCard.OCX Properties

Action String
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

For Valuelink (VLNK) Balance Adjustment: Format: +/-DDDDD.CC.

Authcode String

Used for VTEC, VLNK and GSAR Void transactions. For VTEC and VLNK, set to
auth code of original transaction (the one to be voided). For GSAR and MELL,

set to reference number of the original transaction (the one to be voided).

For BPS, set to retrieval reference number of original transaction (the one to

be voided). For BPS, set to retrieval reference number of original transaction
(the one to be voided).

Card String
The gift card number that will be used when processing the transaction. Max

Length: 20 characters.

CardSeqNum String

For GSAR multi Issuance, sequence number of cards issued at time of
transaction. Example: Ten cards are being issued. The fifth is being sent, so

set CardSeqNum to 5.

CashierID String
VTEC and VLNK – (optional) – numeric value that identifies the cashier
performing the transaction.

CheckCard Boolean

Flag that indicates whether to activate gift card validity testing. Valid

Values: TRUE; FALSE. Default value: TRUE. This value must be set to

FALSE when performing Follow on transactions because the card number is

omitted from these transaction requests.

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP

Please refer to page 20 for a description of these methods.
If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

Demo String

The demo mode flag. In demo mode, a simulated response is returned in

which even amounts return approved, and odd amounts return declined.
Valid Values:

1 – Activates demo mode

0 – Deactivates demo mode (default)

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.

Note: See SSL Information on page 70 for more information.

ExpDate String

The expiration date associated with the gift card that will be processed. Must

be exactly four characters long. Format: MMYY Example: 1208 Note: Most

gift cards do not have an expiration date.

FORCE Boolean
Set to TRUE to process a transaction for which an approval code has already

been issued -- only valid for a GSAR Redemption transaction or a single GSAR
Issuance/Add Value transaction.

GratuityAmount String
The gratuity amount for the transaction. Tip should be no more than 9

characters long (including the decimal). Format: DDDDDD.CC.

GiftPin String
Only used for the processor SVS. To retrieve pin, call GetGfitPin upon

activation. Used for only for virtual gift card transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 225

Property Name Data Type Description – GiftCard.OCX Properties

Industry String
Indicates industry type (1 = retail, 2 = restaurant). For VLNK (0 = retail, 1 =

restaurant, 2 = e-Commerce).

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where
PCCharge is running. Defaults to 127.0.0.1

LastValidDate String

The last year that will be considered a valid expiration date. Currently, the

default value in the control is ―09‖. It is recommended that a setting is

provided by which the end-user can change this property; otherwise, in the
future, end users will require a new control to be distributed to resolve

expiration date issues. Length: 2 digits. Format: YY Example: If

LastValidDate is set to 05, then cards between 06 and 99 are considered

to be 1906 to 1999, and cards between 00 and 05 are 2000 to 2005.

Loyalty Boolean VTEC loyalty transaction flag (0 = non-loyalty, 1 = loyalty).

Manual Long

Flag that indicates whether the transaction was manually entered or swiped.

If the transaction was swiped, the Track property must also be set. Valid

values: 0 = manual transaction, 1 = swiped transaction

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this
value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
58). This Flag has no effect if processing will occur over IP or leased line.

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Gift Card Setup window of PCCharge. Max
Length: 32 characters. This value can be alphanumeric.

OldCard String
For VTEC Replace transaction. Set to account number of old card. For VLNK,

Balance Merge and Balance Transfer.

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction
response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing

transactions.

Partial Boolean
For GSAR: Flag indicating whether the transaction is a partial redemption
transaction.

Path String

For use with File_Transfer CommMethod method only. The path to the

directory in which the PCCharge executable resides. This property must be

set prior to calling the Send, PccSysExists, and other methods that
require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a ―\‖.

Points String For GVEX Points transactions. Set to number of loyalty points for account.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

Processor String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a
valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

PromoCode String
Used for GVEX: A code defined by the merchant that affects the calculation

from amount and units to points.

PCCharge Version 5.9.0
Updated 2/8/2010

 226

Property Name Data Type Description – GiftCard.OCX Properties

Refund String

Flag that indicates whether to provide the customer a refund when

performing a VTEC Deactivate transaction. Valid Values:

1 – Provide refund

0 – Do not provide refund

RFID String

Set to 1 if card information was read from RFID (Radio Frequency

Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all gift processors support ticket numbers.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly
could cause reconciliation issues and problems such as double-charging a

customer‘s account.

TIP String

The tip amount for the transaction. TIP should be no more than 9 characters

long (including the decimal). Format: DDDDDD.CC. Currently, tips are

supported via the TIP property only for VTEC and VLNK restaurant
transactions.

TotalCardNum String
For GSAR multi Issuance, total number of cards being issued at time of

transaction.

Track String

The track II data captured from the magnetic strip of the card.. Max Length:

40 characters.

Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

Alternatively, the GetParseData method can be used to parse the track

data and set the Card, ExpDate, Member, and Track properties
automatically.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will
be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

VirtualGiftCardFlag Boolean
0 - False, 1-True – Only used for the processor SVS. Only used on an

activation to determine if a pin should be returned.

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

TableNumber String
Only used for GAPI in restaurant mode. This is the table number of the gift

card holder

TrackI String Only used for GAPI. The Track I information associated with the card

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

PCCharge Version 5.9.0
Updated 2/8/2010

 227

Property Name Data Type Description – GiftCard.OCX Properties

SkuLoyalty String

GIVEX ONLY – Integration Only

Pass this tag in order to send product codes, quantities and amounts for
loyalty transactions.

Format:

Single Product Code:
<SKU_LOYALTY>Product Code,Amount,Quantity</SKU_LOYALTY>

Multi-Product Codes (Separated with a semi-colon):

<SKU_LOYALTY>Product Code,Amount,Quantity; Product

Code,Amount,Quantity</SKU_LOYALTY>

 These properties are required to process a gift card redemption or sale transaction.

 Required for VTEC gift card transactions

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they
should be implemented.

PCCharge Version 5.9.0
Updated 2/8/2010

 228

GiftCard.OCX Methods

Method Name
Returned
Value

Description – GiftCard.OCX Methods

Abort Boolean

The Abort method attempts to cancel the transaction in progress and will
return a Boolean value that indicates whether or not the transaction was

canceled. Note: This method is not available when integrating using FoxPro.

Use the Cancel method instead.

About MsgBox The About method will display the About box associated with the control.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is

recommended that this method be called:
a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called

c. prior to running the next transaction

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response

files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered and the GetErrorDesc method will give a brief description of the
error. Consult the section System Error Codes and Descriptions for a list of

valid error codes and descriptions that will be returned (see page 148). For

use only with File_Transfer CommMethod

GetActivationCount String Returns the number of activations in the current batch

GetActivationTotalAmount String Returns the total dollar amount of activations in the current batch

GetAddPointsCount String Returns the number of AddPoints Transactions in the current batch

GetAddPointsTotalAmount String Returns the total dollar amount of AddPoints transactions in the current

batch

GetAddValueCount String Returns the number of AddValue transactions in the current batch

GetAddValueTotalAmount String
Returns the total dollar amount of AddValue transactions in the current

batch

GetAmountDue String

Returns the amount due when Partial Auth is enabled.

Note: With Elavon (NOVA) as the processor, ―Enable Pre-Paid Cards‖ option

within PCCharge MUST be checked for this feature to work. The option is

located under Setup>Credit Card Company>Extended Data. This option is only

configurable in PCCharge version 5.7.1 release I sp9a and above.

GetAuth String

The GetAuth method returns the authorization number for approved

transactions or the reason the transaction was declined (if the processor

provides one). For GVEX Balance transaction: GetAuth will return the

balance remaining on an account. For all other GVEX transactions: GetAuth
will return the transaction‘s reference/error message. For VTEC, returns the

Auth Code. For a VTEC Batch function: use this method to retrieve the

number of sales done that day and the total amounts of sales in the following
format <# of transaction>, <amount>.

GetAuthAmount String
Used in partial redemption transactions where only part of the amount was

authorized. Returns the actual authorized amount.

GetBalanceTransferCount String Returns the number of Balance Transfers in the current batch

GetBalanceTransferTotalAmou

nt
String Returns the total dollar amount of Balance Transfers in the current batch

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns ―CAPTURED‖ as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result
in a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been
approved.

PCCharge Version 5.9.0
Updated 2/8/2010

 229

Method Name
Returned

Value
Description – GiftCard.OCX Methods

GetCashBack String
Used in redemption for remaining balance transactions where the transaction
amount is so close to the balance of the card that the entire balance is

authorized. Returns the remainder that is owed to the customer.

GetCreditCount String Returns the number of credits in the current batch

GetCreditTotalAmount String Returns the total dollar amount of credits in the current batch

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see
page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetExp String
Returns the expiration date for processors who issue expiration dates in the

response.

GetGiftCardBalance String Returns the gift card balance.

GetGiftCardIssuer String
Returns the gift card issuer. Consult the section DevKit Constants for

description of values (see page 141).

GetGiftCardType String
Returns type of gift card represented by card property. Consult the section

DevKit Constants for description of values (see page 141).

GetGiftPin String
Only used for the processor SVS. Returned on activation if the virtual gift

card tag is set to ―1‖.

GetLevel String Returns the customer‘s loyalty level. Only used for VTEC loyalty gift cards.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetParseData String

The GetParseData method will parse a string (containing credit card track

data) passed to it and populate the Card, ExpDate, and Track properties

with the appropriate data. GetParseData will return an integer indicating

its success. Valid return values: 0 (error parsing data), 1 (track I successful),

or 2 (track I & II successful).

GetPointsBalance String Returns points balance for loyalty cards

GetPointsCount String Returns the number of points transactions in the current batch

GetPointsTotalAmount String Returns the total dollar amount of points transactions in the current batch

GetProcRespCode String The processor response code. Only returned by the processor SVS.

GetRefNumber String

The GetRefNumber returns the Reference field from the .oux file. The
Reference field is used for different purposes (depending on the gift card

processor). For GVEX Register transaction: The first eleven digits of an

account number will be returned. For all VTEC transactions: The account‘s
remaining balance will be returned. For a VTEC batch function: use this

method to retrieve the number of activations done that day and the total

amounts of activations in the following format <# of transaction>,

<amount>.>. For a BPS Redemption transaction, returns the retrieval
reference number.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetRet String

For GVEX: Returns the loyalty balance. For VLNK: Returns the trace number.

For a VTEC batch function: : use this method to retrieve the number of Gift
Transactions Voids performed that day. You can call GetVoidBalance to

determine the total amount of the voids.

GetSaleCount String Returns the number of redemptions in the current batch

GetSaleTotalAmount String Returns the total dollar amount of redemptions in the current batch

PCCharge Version 5.9.0
Updated 2/8/2010

 230

Method Name
Returned

Value
Description – GiftCard.OCX Methods

GetTI String

The GetTI method returns the TI field from the .oux file. The TI field is
used for different purposes (depending on the gift card processor and

transaction type). For GVEX Register: The remaining digits of an account
number will be returned. For GVEX Redemption, Increment, and Cancel:

The balance remaining on the card will be returned. For a VTEC batch

function: : use this method to retrieve the number Add Value Transactions

done that day and the total amounts of Add Value in the following format <#
of transaction>, <amount>>.

GetTicket String

The GetTicket method returns the Ticket field from the .oux file. The Ticket

field will return the ticket for all transactions except for a VTEC batch

function. For a VTEC batch function: use this method to retrieve the
number of gift card that has been de-activated that day and the total

amounts of de-activations in the following format <# of transaction>,

<amount>.>.

GetTIM String
Returns the Time of the transaction. This value is not returned by all

processing companies. For VTEC, returns the Amount Due.

GetTipCount String Returns the number of Tip transactions in the current batch

GetTipTotalAmount String Returns the total dollar amount of Tip transactions in the current batch

GetTransDateTime String Returns the transaction date and time when passed back by a processor.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

GetVoidBalance String Returns the Void Balance

GetVoidCount String Returns the number of voids in the current batch

GetVoidTotalAmount String Returns the total dollar amount of Voids in the current batch

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can
be used by integrators that wish to parse the results of the transaction

themselves or for troubleshooting purposes. Refer to the section File

Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file
associated with the transaction. The request (.inx) file contains XML string

data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions. For use only with File_Transfer CommMethod

PCCharge Version 5.9.0
Updated 2/8/2010

 231

Method Name
Returned

Value
Description – GiftCard.OCX Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the control will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the
programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only—do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean Returns TRUE for card of correct length

ValidDate Boolean
The ValidDate method returns TRUE if the expiration date provided in the

ExpDate property is valid, or FALSE if it is not.

ValidIssuer Boolean Returns TRUE for valid card issuer

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

VerifyAmount2 Boolean

The VerifyAmount2 method returns TRUE if the amount provided in the

Amount property is in a valid format (+/-DDDDD.CC). or FALSE if it is not.

If FALSE is returned, check the error code to determine the reason for

failure. Consult the section System Error Codes and Descriptions for a list of
valid error codes and descriptions that will be returned (see page 148). The

difference between VerifyAmount and VerifyAmount2 is that

VerifyAmount2 allows a + or – to be in the first position of the Amount

property. This is needed for Balance Adjustment transactions.

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in

the ExpDate property is correct and in the right format, or FALSE if it is

not. VerifyExpDate calls the ValidDate function to validate the

expiration date. If FALSE is returned, check the error code to determine the
reason for failure. Consult the section System Error Codes and Descriptions

for a list of valid errors that will be returned (see page 148).

VerifyGiftCard Boolean

The VerifyGiftCard method verifies that a card is provided and the card is the

expected length and return TRUE is it passes, otherwise FALSE will be

returned.

VerifyMerchantNumber Boolean No Longer Supported

VerifyProcessor Boolean No Longer Supported

GetPreAuthCount String
Only for GAPI, this returns the total number of gift card pre-auth

transactions processed that day.

GetPreAuthAmount String
Only for GAPI , this returns the total amount of gift card pre-auth transaction

processed that day.

GetPostAuthCount String
Only for GAPI, this returns the number of the gift card post-auth transactions
processed that day.

GetPostAuthAmount String
Only for GAPI, this returns the total amount of the post-auth transactions

processed that day.

PCCharge Version 5.9.0
Updated 2/8/2010

 232

Method Name
Returned

Value
Description – GiftCard.OCX Methods

GetIssuanceCount String Only for GAPI, this returns the total number of gift cards issued that day.

GetIssuanceTotalAmount String Only for GAPI, returns the total amount of the gift cards issued that day.

GetDeactivateCount String Only for GAPI, this returns how many gift cards where deactivated that day.

GetDeactivateTotalAmount String
Only for GAPI, this returns the total amount of gift card deactivations that

day.

GetBalanceAdjustCount String
Only for GAPI, this returns the total number of gift cards that were balance

adjusted that day.

GetBalanceAdjustTotalAmount String
Only for GAPI, this returns the total amount of balance adjustments on gift

cards that day.

GetBalanceMergeCount String
Only for GAPI, this returns the number of the gift cards that were balance

merged that day.

GetBalanceMergeTotalAmount String
Only for GAPI, this returns the total amount of gift card balance merges that
day.

GetReportLostStolenCount String Only for GAPI, returns the total reported stolen or lost gift cards that day.

GetReportLostStolenTotalAmo

unt
String

Only for GAPI, returns the total amount of all stolen or reported lost gift

cards that day.

GetCashoutTotalAmount String
Only for GAPI, returns the total amount of all cashout transactions processed
that day.

GetCashoutCount String
Only for GAPI, returns the total number of the cashout transactions

processed that day.

GetReactivateCount String
Only for GAPI, returns the total number of gift cards that have been
reactivated that day.

GetReactivateTotalAmount String
Only for GAPI, the total amount of all gift cards that have been reactivated

that day.

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

GiftCard.OCX Events

Event Name Description – GiftCard.OCX Events

Error

The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

PCCharge Version 5.9.0
Updated 2/8/2010

 233

Batch.OCX

Batch.OCX provides integrators with properties and methods used to perform batch settle, close, and
inquire operations. This control may be used with both Host based and Terminal based processors. To

use Batch.OCX to perform batch operations, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

perform batch operations by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the batch operation to be performed.

(The properties marked with a in the Batch.OCX properties table are the minimum required to
settle a batch.)

3. Call the Send method.

4. Wait for the Error or Finish event to occur.

5. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult method. If an error occurs, call the

GetErrorCode and GetErrorDesc methods to determine the nature of the error.

6. Call the DeleteUserFiles method to delete all files related to the transaction.

7. Call the Clear method to reset all the properties and methods related to the transaction or
destroy the object.

Note: When using action code 39, an appropriate timeout value must be set to allow for closing/settling
of all merchant numbers installed in PCCharge. If action code 39 is chosen, a default value of 1200
seconds is selected. If a longer time is needed, the timeout property must be set to an adequate value.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 234

Batch.OCX Properties

Property Name Data Type Description – Batch.OCX Properties

Action Single
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

BatchCloseType String

Flag that determines what type of batch close will occur. This flag only

supported by FDMS Atlanta and Fifth-Third when using action code 30 or 31

Valid values:

1 – Standard End of Day Batch Close (Default)

2 – Shift Close
3 – Fifth-Third Terminal Based Batch Close of Debit, EBT, or Gift

Cancel Boolean
Set the Cancel property to TRUE to attempt to cancel the settle/close

function. Check the GetResult method to see if the function was

Canceled.

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP

Please refer to page 20 for a description of these methods.
If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.
Note: See SSL Information on page 70 for more information.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where
PCCharge is running. Defaults to 127.0.0.1

MerchantNumber String Account number issued to merchant by processor

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction

response file (.oux file). The default is 0.25 seconds. This value should only
be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing
transactions.

Path String

For use with File_Transfer CommMethod method only. The path to the

directory in which the PCCharge executable resides. This property must be

set prior to calling the Send, PccSysExists, and other methods that

require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a ―\‖.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

Processor String

The code for the processing company that will be used to perform batch

operations. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

SplitProcessor String
Only used when settling the processor CITI for private label transactions. Set
this property to the main credit card processor ID code being used.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59).

User ** String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 235

Property Name Data Type Description – Batch.OCX Properties

Command String

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

BatchNumber String

Submit batch number that was returned on the AMEX split dial settlement,
needs to be passed when performing the following Action Codes:
35 – Reverse Batch

36 – Resubmit Batch

37 – Get Results

38 – Finalize Batch

 These properties are required to settle a batch.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

The following properties are no longer available in the Batch.OCX and should be ignored:

AmexAmount PurchaseCount

AmexCount Response

Balance ReturnAmount

BatchDate ReturnCount

BatchNumber Store

CIC Terminal

ItemCount VisaMCAmount

PurchaseAmount VisaMCCount

PCCharge Version 5.9.0
Updated 2/8/2010

 236

Batch.OCX Methods

Method Name
Returned

Value
Description - Batch.OCX Methods

About Single The About method will display the About box associated with the control.

Clear None

The Clear method will clear the values in all properties and methods. It is
recommended that this method be called:

a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called
c. prior to running the next transaction

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered and the GetErrorDesc method will give a brief description of the

error. Consult the section System Error Codes and Descriptions for a list of
valid error codes and descriptions that will be returned (see page 148). For

use only with File_Transfer CommMethod

GetAccepted(Index) Boolean Index is an integer. Returns TRUE if batch settle/close was accepted

GetBalance String Returns dollar value of batch

GetBatches String Returns number of batches for settlement

GetBatchNumber String After a terminal-based batch settles, returns the batch number.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be
returned (see page 148).

GetItemCount String Returns the number of transactions in the batch

GetNumberIndexs Integer
The GetNumberIndexs method returns the number of merchant numbers
that are stored in PCCharge. This number indicates how many batches will

be settled or closed if an action code of 39 is submitted.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetProcessed Boolean Returns TRUE if inquiry is successful

GetRespCode String

Returns the response code for the batch if the close batch command was

given. The response code indicates whether or not the transaction was

successfully closed. If the batch is declined, the GetResult method will

provide more information indicating why the transaction was not approved.

Valid Values: 2 = Settled, 6 = Declined, or 8 = Deferred.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetSettleAmount None No Longer Supported

GetSettleNumber String Returns sequence number of batch

GetStatus String

Returns the status of the batch when performing an inquiry or a batch
close/settle operation. If performing a batch close/settlement operation,

GetStatus will return a response from the processor that indicates whether
or not the batch was successfully closed or settled. Example: If TSYS

rejects the batch, GetStatus will return the RB (rejected batch) number

from TSYS . If TSYS accepts the batch, GetStatus will return the batch

number and an ―ACCEPTED‖ response will be returned.

PCCharge Version 5.9.0
Updated 2/8/2010

 237

Method Name
Returned

Value
Description - Batch.OCX Methods

GetSystemInfo None

The GetSystemInfo method is used to set the MerchantNumber and

Processor properties of Batch.OCX. To use GetSystemInfo, pass the
index number of a merchant number that is registered in PCCharge as a

parameter (for example, the first Merchant number that is set up in

PCCharge is assigned the index of ―1‖). Once the index number has been

passed to PCCharge via GetSystemInfo, the merchant number and

processor can be retrieved using the MerchantNumber and Processor
properties.

GetTotals Boolean No Longer Supported

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can

be used by integrators that wish to parse the results of the transaction
themselves or for troubleshooting purposes. Refer to the section File

Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file

associated with the transaction. The request (.inx) file contains XML string
data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions. For use only with File_Transfer CommMethod

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the

action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the Batch.OCX will set the error code and

description, raise the Error event, and terminate processing. Consult the
section System Error Codes and Descriptions for a list of valid errors that

will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the

programming language being used supports enumerated values).

Valid values:

3 (TTYPE_XML) – XML message format – RECOMMENDED

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only-- do not attempt to use any values other than the ones listed above.

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

GetRecordCount String The number of records matching the inquiry

PCCharge Version 5.9.0
Updated 2/8/2010

 238

Method Name
Returned

Value
Description - Batch.OCX Methods

GetTerminationStatus String

Retrieves Termination Status which returns a ―6‖ upon successful settlement.
If anything other than a ―6‖ is returned there may be an issue with the

settlement file and should be investigated. This applies to : GSAR, Elavon

(NOVA), and NBS

Response:
6 = Batch Settled and file has been deleted.

8 = Batch Settled, but the file is locked and cannot be deleted.

PCCharge Version 5.9.0
Updated 2/8/2010

 239

Batch.OCX Events

Event Description - Batch.OCX Events

Error

The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

Note: In the event there are multiple batches waiting to be settled in one settlement, the integrated application will need to be

designed to loop through the settlement response to retrieve the response for each batch.

PCCharge Version 5.9.0
Updated 2/8/2010

 240

Device.OCX

The Device.OCX allows integration to PINpads connected to the serial port. Currently, the

Device.OCX supports the following devices:

 VeriFone 101/1000 (PIN entry only)

 VeriFone 2000 (Card Swipe and PIN entry only)

 Ingenico eN-Crypt 2100 (Card swipe and PIN entry)

 VeriFone SC5000 (Card Swipe and Pin Entry only. Only SC5000 with VeriFone 2000 emulation)

 VeriFone Everest (Card Swipe, Pin Entry, and Display Manipulation)

 VeriFone Omni 3730 (Card Swipe, Pin Entry, Printing)

Additional devices will be added in the future.

The Device.OCX provides the functionality to Initialize a PINpad and retrieve the PIN from the
cardholder. If using the Ingenico eN-Crypt 2100, Verifone Everest, 2000, VeriFone Omni 3730, or
SC5000, it also allows retrieving the card swipe data. The PINpad must be initialized once prior to
retrieving the PIN. If the PINpad is powered off and back on, it must be re-initialized. If the object is
destroyed and then instantiated, the PINpad must be re-initialized.

Device.OCX Dependencies

In order for the Device.OCX to function properly, a set of dependencies need to be present and
registered in the system32 directory. The dependencies are deployed with the following DevKit(s):

 IPCharge DevKit

 PCCharge DevKit

Integrators should ensure the following dependencies are part of their deployment package when
installing any POS that utilizes the Device.OCX.

 MSCOMM32.OCX

 OPOSLineDisplay.ocx

 OPOSMSR.ocx

 OPOSPINPad.ocx

 OPOSPOSKeyboard.ocx

 SaxComm8.ocx

PCCharge Version 5.9.0
Updated 2/8/2010

 241

Device.OCX Properties

Property Name Data Type Description - Device.OCX Properties

Amount String

This amount displayed to customer on the PINpad for approval

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only
transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

Baud String Baud rate

Card String

The debit card number that will be used when processing the transaction.

Max Length: 20 characters. Example: 5424180279791765

NOTE: Is it the integrator‘s responsibility to remove spaces in the card
number if there are spaces in the card number from the track data.

Databits String Databits (Example: "7" or "8")

DefaultMessage String

The default message for the PINpad that is connected to the machine the

Device.OCX will be communicating with. For example, if this is set to
"Welcome", "Welcome" will appear on the screen at times of inactivity. Note:

Not applicable for all PinPads.

Demo Boolean

The Demo mode flag. Indicates whether the Device.OCX should run in demo

mode. In demo mode, a simulated response is returned in which the Pin and

KeySerialNumber are set to demo values. Valid Values:

TRUE – Activates demo mode

FALSE – Deactivates demo mode (default)

Device Enum

The PINpad that will be used. This parameter is specified by using a

numerical value (or an enumerated value if the programming language being
used supports enumerated values).

Valid values:
0 (ppdVerifone_101) – Verifone 101 or 1000

1 (ppdIVICheckMate_2100) – Ingenico EN-CRYPT 2100

2 (ppdVerifone_2000) – Verifone 2000 or Verifone SC5000(with Verifone 200

emulator)
3 (ppdVerifone_Everest) – Verifone Everest

4 (ppdVerifone_SC5000) – Verifone SC5000 (w/ 2000

emulation)

5 (ppdVerifone_3730) – Verifone Omni 3730

Example: Device = 0

DisplayString String

For Verifone Everest only. Sets message that will display on Pin Pad. Must

be set before initializing or calling RefreshDisplay. Maximum length of

characters that the Everest can display is 34.

EncryptMethod Long

The Encryption method that will be used. This parameter is specified by
using a numerical value (or an enumerated value if the programming

language being used supports enumerated values).

Valid values:

0 (ppmMasterSession) – Master Session encryption (only used with Elavon

(NOVA))

1 (ppmDUKPT) – DUKPT (Derived Unique Key Per Transaction

Example: EncryptMethod = 1

MasterKey String

Contains the Master Key for Master Session encryption. Not all processors who

do Master Session encryption will have a Master Key. Set MasterKey to "0" if
no Master Key is present.

Parity String Parity ("E" for even, "O" for odd, "N" for none)

Port String Number of the COM port to be used (Example: "1" used for COM port 1)

PCCharge Version 5.9.0
Updated 2/8/2010

 242

Property Name Data Type Description - Device.OCX Properties

RefreshDisplay String
For VeriFone Everest only. Refreshes display on Pin Pad to the DisplayString

property. Must set DisplayString property before calling this method.

ShutDownApp None For VeriFone Omni 3730 only. Cancels the application and closes the port.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The default timeout value is 15 seconds. It is highly recommended

that integrators review the section Timeouts (see page 59).

WorkingKey String Processor‘s working key. This value is required for Master Session.

 These properties must be set before Initialize can be called.

 These properties must be set before GetPin can be called.

Device.OCX Methods

Method Name
Returned

Value
Description - Device.OCX Methods

About None The About method will display the About box associated with the control.

Cancel Boolean
The Cancel method will close the PINpad‘s Com port. Only call after the

application has been terminated.

Clear Boolean
The Clear method will clear the values in all properties and methods. It is
recommended that this method be called after the transaction results have

been retrieved by using the various .get methods.

GetCard String
The GetCard method returns the card number that was obtained when the

GetCardSwipe method was called.

GetCardSwipe Boolean
The GetCardSwipe method can only be used for the IVI eN-Crypt 2100 and
will wait for a card to be swiped with the PINpad. If the card is not swiped

within the timeout value, a timeout will occur.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Cancel,

Initialize, or GetPin. Consult the section System Error Codes and

Descriptions for a list of valid errors that will be returned (see page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be
returned (see page 148).

GetExpDate String
The GetExpDate method returns the expiration date that was obtained
when the GetCardSwipe method was called.

GetKeySerialNumber String Gets the Key Serial Number. Only used for DUPKT encryption.

GetMember String
The GetMember method returns the cardholder's name that was obtained

when the GetCardSwipe method was called.

GetPin String

Gets the PIN from the PINpad. This will prompt the user to enter his/her PIN.

GetPin will then return the encrypted PIN. GetPin will return nothing if a
timeout or cancel occurs.

GetTrack1 String

The GetTrack1 method returns the track I data of the card that was

obtained when the GetCardSwipe method was called. Only for the IVI eN-
Crypt 2100. Currently, PCCharge does not support any Track 1 data for any

processors.

GetTrack2 String
The GetTrack2 method returns the track II data of the card that was

obtained when the GetCardSwipe method was called.

Initialize Boolean
Initializes the PINpad. Returns TRUE if the initialization was successful,

FALSE if not. Initialize has an optional parameter than can be passed in that
will allow checking of the com port.

Device.OCX Events

Event Description - Device.OCX Events

PCCharge Version 5.9.0
Updated 2/8/2010

 243

Event Description - Device.OCX Events

CardSwipe

Used only for the Verifone 2000(including SC5000 with 2000 emulator), Omni 3730, Everest. Once the

PINpad is initialized and a card is swiped, this event will fire. Once the event fires, call the various

get methods (GetCard, GetExpDate, GetTrack2, GetMember) to retrieve data from the magnetic

stripe of the card.

Error

The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

PCCharge Version 5.9.0
Updated 2/8/2010

 244

SC550.OCX

The SC550.OCX allows integration to the Verifone SC5000 PINpad. The Verifone SC5000 PINpad is only

used when performing Canadian Debit transactions with Global Payments East (NDC).

Refer to the section Canadian (Interac) Debit Transactions (see page 112) for more information on

using SC550.OCX to integrate Canadian Debit transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 245

SC550.PinSC550 Class Properties

Property Name Data Type Description – SC550.PinSC550 Class Properties

Account String The bank account type

ActionPending
GPSActionPe

nding

ENUM_ACTION_PENDING_INTERAC

ENUM_ACTION_PENDING_MSR

ENUM_ACTION_PENDING_NONE

ENUM_ACTION_PENDING_PRINTER

AppName String

This property contains the AppName of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: [GPS/CA/CC/1.0b]. Provided for informational
purposes only.

AutoInterval String
Sets how often the PinSC550 class polls for the OMC and IMC (Out MAC and
In MAC) files Format: Milliseconds

Default Value: ―1000‖.

AutoProcess Boolean

Determines whether the PinSC550 class will poll for and automatically
process the OMC and IMC (Out MAC and In MAC) files in the PCCharge

directory.
Valid Values:

TRUE – enable automatic processing (recommended)

FALSE – disable automatic processing (default)

BatchCode String Settlement number

Baud String
Baud Rate used to communicate with the PINpad.

Default Value: ―9600‖

ChipSN String

This property will contain the Chip Serial Number of the PINpad. This field is

populated by running the GetSerialBlock method. The Chip Serial

Number is passed as a parameter to the Debit.OCX‘s

GetPOSSequenceNumber method.

ChipStatus String

This property contains the Chip Status of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: 00. Provided for informational purposes only.

CommVisible Boolean

Used to determine whether the PINpad communication monitor is displayed

or hidden. Set to TRUE to display the monitor, FALSE to hide the monitor
(default). The communication monitor is typically used to troubleshoot an

integration to the PINpad.

DataBits String
DataBits used to communicate with the PINpad.

Default Value: ―8‖

DefaultLanguageCode String ―English‖ or ―French‖ for Canadian Debit

DeviceData String

The property will contain string data returned from the PINpad. This
property is populated when performing various PINpad operations with the

PINpad. For example, when the Interac response data is returned from

PINpad, the data is available in this property.

DeviceState
GPSRespStat
us

Returns the state of the PINpad. Valid return values are listed in the
GPSRespStatus Values table (see below)

FacilityCode String

This property contains the Facility code of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: 002. Provided for informational purposes only.

FirmVersion String

This property contains the firmware version of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: 1513. Provided for informational purposes only.

KernelID String

This property contains the Kernel ID of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: K1N8LE10. Provided for informational purposes only.

KeyType
GPSKeyMana
gementType

ENUM_DUKPT

ENUM_MAC

ENUM_MASTERSESSION

PCCharge Version 5.9.0
Updated 2/8/2010

 246

Property Name Data Type Description – SC550.PinSC550 Class Properties

LanguageCode
GPSLangCod
e

Language Code used when communicating with and displaying messages on

the PINpad.
Valid Values:

0 – English (default)

1 – French

MacBlock String
The MAC block returned from the PINpad. Once the RequestMAC method is
called, this property will be populated with the MAC Block information that is

returned from the PINpad.

Parity String

Parity used to communicate with the PINpad.
Valid Values:

E – even

O – odd

N – None (default)

PinBlock String PinBlock information from the PINpad.

PinPadType String

This property contains the PINpad type. This data will be available once the

GetSerialBlock method has been executed successfully. Example: 001A.
Provided for informational purposes only.

Port String
Port Number to be used to communicate with PINpad.

Default Value: ―COM1‖

PortState
GPSRespStat

us

Returns the state of the PINpad‘s Port. Valid return values are listed in the

GPSRespStatus Values table (see below)

ProdData String

This property contains the Prod Data of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: 020605. Provided for informational purposes only.

ReMacData String

If ReMACing will need to occur, this property will contain the string that

needs to be sent to the PINpad to retrieve the new MAC block. Use the

RequestMAC method to request the new MAC block.

RequireReMac Boolean

If ReMACing is required this property will return TRUE, otherwise, this

property will return FALSE. If TRUE, use the RequestMAC method to pass

the string that appears in the ReMacData property to retrieve a new MAC
block.

RespCode
GPSRespCod

e

Returns a value that indicates the status of various operations. Valid return

values are listed in the GPSRespCode Values table (see below)

ResponseAsString String
Returns a string that is the English text that describes the GPSRespStatus
enumerated value or code. Pass, as a parameter, either an enumerated

value or code as defined in the GPSRespStatus Values table (see below).

ResponseCodeAsString String
Returns a string that is the English text that describes the GPSRespCode

enumerated value or code. Pass, as a parameter, either an enumerated
value or code as defined in the GPSRespCode Values table (see below).

ROMVersion String

This property contains the ROM Version of the PINpad. This data will be

available once the GetSerialBlock method has been executed

successfully. Example: 01. Provided for informational purposes only.

ServerPath String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to setting the AutoProcess property to TRUE.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a ―\‖.

TimeOut String
The Timeout value

Default Value: ―5‖

PCCharge Version 5.9.0
Updated 2/8/2010

 247

Property Name Data Type Description – SC550.PinSC550 Class Properties

TrackII String

This property contains the Track II data from the card. This data will be

available once the customer swipes a card in the PINpad. Note: The value
will contain the sentinels (―;‖ and ―?‖) that are captured from the magnetic

stripe of the card.

Example: ;1234123412341234=08121234123412340001?

Note: The value between the ; and = is the card number. The first four

digits after the = is the expiration date in YYMM format (Note: The

expiration date must be sent to PCCharge in MMYY format). The last digit

(the digit before the ?) is the language code.

VFIBlock String Chip Serial Number of the PINpad

 Must be set correctly prior executing the Initialize method

 Properties used to enable the automatic processing of OMC files.

SC550.PinSC550 Class Methods

Method Name
Returned

Value
Description – SC550.PinSC550 Class Methods

Base64Decode String
Used to Base 64 decode a string that comes back from PCCharge. Only used if

AutoProcess is disabled (not recommended).

Base64Encode String
Used to Base 64 encode a string. Use this prior to sending info to PCCharge.

Only used if AutoProcess is disabled (not recommended).

Cancel None Cancels the transaction.

ClosePort None Closes the port that the PINpad is connected to.

DispBankResponse None Displays the bank response.

DispGenMsg None
Displays a general message on the PINpad, 3 parameters, string, string,
language code

DispObtainCard None Displays text message onto the PINpad ―Obtain Card‘.

DispPrinterDown None Displays message onto the PINpad ―Printer Down‖.

GetSerialBlock None
Obtains the Chip Serial Number from the PINpad. This method populates the

ChipSN property with the PINpad‘s Chip Serial Number.

Initialize None

Initializes PINpad. The properties in the SC550.PinSC550 Class Properties

table that are marked with a must be set correctly prior to calling the

OpenPort and Initialize methods.

InteracAnalysis None

If the AutoProcess property is set to FALSE (meaning that the integrator

has chosen to manually process OMC and IMC files—NOT recommended), this
method is used to verify the transaction response from the processor. If

AutoProcess is set to TRUE, this method is not needed to process
transactions. This method sends the data contained in the OMC file in the

PCCharge directory to the PINpad for verification. Two parameters, the

string from OMC file, and language code must be passed when calling this
method. Before passing the string to this method, it must be decoded using

the Base64Decode method.

LoadKey None Used to load the key into the PINpad. Pass the key as a parameter.

OpenPort None

Enables the port for PINpad. This method must be called first. The

properties in the SC550.PinSC550 Class Properties table that are marked

with a must be set prior to calling the OpenPort and Initialize
methods.

RequestInterac None

This method is used to instruct the PINpad to prompt the customer to confirm

the amount of the transaction, indicate the tip amount, indicate the bank

account type, and enter their PIN. This method requires two parameters:
The Interac request string (the string returned from

clsInteracReq.BuildInteracRequest method) and the Language code

of the card. Once the customer enters the data, the ActionEvent event

will fire indicating the PINpad has returned the transaction-specific data such
as the MAC block, the PIN block, the bank account type, and the tip amount.

PCCharge Version 5.9.0
Updated 2/8/2010

 248

Method Name
Returned

Value
Description – SC550.PinSC550 Class Methods

RequestMAC None

If ReMACing is required, this method is used to request a new MAC block from
the PINpad. This method requires a parameter, the MAC data portion of the

Interac request string, to be sent as a variable. Once the PINpad returns the

new MAC block, the MacBlock property will be populated with the new MAC

block value. Use the RequireReMac property in the PinSC550 class to
determine if ReMACing must occur. If ReMACing is required, pass the data in

the ReMacData property as a variable when using this method.

StartMSR None

Sends a command to the PINpad to prompt the customer to swipe their card.
Once the card is swiped, the PINpad will read the magnetic data on the debit

card, and then populate the TrackII property with the track II data from
the card.

 Must be called prior to executing the StartMSR method

PCCharge Version 5.9.0
Updated 2/8/2010

 249

SC550.PinSC550 Class Events

Event Description – SC550.PinSC550 Class Events

ActionUpdate

The ActionUpdate event will fire when the state of PINpad changes. Once the ActionUpdate

event has fired, two values, eAction and eResp, are set and can be used to determine the current

state of the PINpad. EAction will contain one of the values defined in the GPSPinPadAction Values

table (see below) and eResp will contain one of the values defined in the GPSRespStatus Values table

(see below). The value returned in eResp can be passed to the ResponseAsString method to
provide an English description of the code.

GPSPinPadAction Values

Code Enumerated Value – GPSPinPadAction Values

1 ENUM_ACTION_PORT_STATE_CHANGE

2 ENUM_ACTION_INIT_PINPAD

3 ENUM_ACTION_MSR_START

4 ENUM_ACTION_MSR_STOP

5 ENUM_ACTION_REQ_SERIAL

6 ENUM_ACTION_DEVICE_STATE_CHANGE

7 ENUM_ACTION_MSR_RECEIVED_DATA

8 ENUM_ACTION_MSG_DISP_GEN

9 ENUM_ACTION_MSG_DISP_OBTAIN

10 ENUM_ACTION_MSG_DISP_BANKRESP

11 ENUM_ACTION_MSG_DISP_PRINTERDOWN

12 ENUM_ACTION_PTR_RECEIVED_DATA

13 ENUM_ACTION_DEVICE_ACTION_CHANGE

14 ENUM_ACTION_REQ_MAC

15 ENUM_ACTION_REQ_INTERAC

16 ENUM_ACTION_INTERAC_RECEIVED_DATA

17 ENUM_ACTION_ANALYSIS_INTERAC

18 ENUM_ACTION_KEY_LOAD

19 ENUM_ACTION_AUTOPROCESS_CHANGE

GPSRespCode Values

Code Enumerated Value – GPSRespCode Values

-1 ENUM_RCODE_CLEAR

0 ENUM_RCODE_SUCCESSFUL

1 ENUM_RCODE_UNSUCCESSFUL

2 ENUM_RCODE_TIMEOUT

3 ENUM_RCODE_CANCELED

4 ENUM_RCODE_CORRKEY

6 ENUM_RCODE_INVALID_ACCTLEN

7 ENUM_RCODE_MAC_NOVERIFY

9 ENUM_RCODE_MAC_NOBLOCK

11 ENUM_RCODE_KEY_DECRYPT_ERROR

13 ENUM_RCODE_KEY_LOCATION_ERROR

14 ENUM_RCODE_KEY_MTK_NOSELECT

16 ENUM_RCODE_KEY_LOAD_FAIL_REVERT

98 ENUM_RCODE_KEY_LOAD_FAIL_NOREVERT

PCCharge Version 5.9.0
Updated 2/8/2010

 250

GPSRespStatus Values

Code Enumerated Value – GPSRespStatus Values

-35 ENUM_STATUS_AUTOPROCESS_ON

-34 ENUM_STATUS_AUTOPROCESS_OFF

-30 ENUM_STATUS_PENDING_NONE

-29 ENUM_STATUS_PENDING_MSR

-28 ENUM_STATUS_PENDING_PRINTER

-27 ENUM_STATUS_PENDING_INTERAC

-20 ENUM_STATUS_DEVICE_IDLE

-19 ENUM_STATUS_DEVICE_PROCESS

-18 ENUM_STATUS_DEVICE_CANCEL

-17 ENUM_STATUS_DEVICE_WAITING

-16 ENUM_STATUS_DEVICE_INPUT_PENDING

-10 ENUM_STATUS_PORT_OPEN

-9 ENUM_STATUS_PORT_CLOSED

0 ENUM_STATUS_OK

1 ENUM_STATUS_INVALID_ACTION

2 ENUM_STATUS_DEVICE_INPROCESS

3 ENUM_STATUS_DEVICE_TIMEOUT

4 ENUM_STATUS_UNKNW_ERROR

PCCharge Version 5.9.0
Updated 2/8/2010

 251

SC550.clsInteracReq Class Properties

Property Name Data Type Description – SC550.clsInteracReq Class Properties

Account String

After the ParseResponseData method has been called, this property will

contain the customer-specified bank account type.
Possible return values:

A – Chequing

B – Savings

If this customer-specified bank account type is different that the bank

account type specified in the AccType when building the Interac Request, a

ReMAC must occur. Use the RequireReMac property in the PinSC550 class

to determine if ReMACing must occur.

AccType String

The customer‘s bank account type used when processing the transaction.

1 or ENUM_ACC_CHEQ – Chequing

1 or ENUM_ACC_SAV – Savings
Note: When populating this property to build the initial Interac request

string, the customer‘s bank account type will not be known by the merchant
(the customer will enter it once prompted). This value must be hard-coded.

It is suggested to hard-code this value to ―1‖ if most of the merchant‘s

customers use their checking accounts when purchasing products or ―2‖ if

most of the merchant‘s customers use their saving account when purchasing
products.

Note: A new MAC value must be requested from the PINpad if the account
chosen by the merchant differs from the account chosen by the customer.

Use the RequireReMac property in the PinSC550 class to determine if
ReMACing must occur.

Amount String

Set this property to the Amount of the transaction to be processed. This

property should not contain any decimals or commas. Example: to specify a

$1.00 transaction, set this property to “100”

DisplayAmount String

Set this property to the amount of the transaction. The amount specified is

displayed to the customer for confirmation on the PINpad. This amount

should include the decimal point and trailing zeros, if applicable. Example:

to specify a $1.00 transaction, set this property to “1.00”

MacBlock String
After the ParseResponseData method has been called, this property will
contain the MAC block information that was returned from the PINpad.

PinBlock String
After the ParseResponseData method has been called, this property will
contain the customer‘s encrypted PIN that was returned from the PINpad.

SequenceNum String

The POS Sequence number. Set this property to the value that was returned

by PCCharge when calling the GetPOSSequenceNumber method in the

Debit.OCX control.

TermID String

Set this property to the Chip Serial Number of the PINpad. Use the

GetSerialBlock method in the PinSC550 class to acquire the Chip Serial

Number of the PINpad.

TipAmount String

After the ParseResponseData method has been called, this property will

contain the optional customer-specified tip amount. If this property is
populated with a value greater than 0, a ReMAC must occur. Use the

RequireReMac property in the PinSC550 class to determine if ReMACing
must occur.

TipType Integer

Determines if the PINpad will prompt the customer to enter a tip amount and

also determines if the PINpad will display a ―suggested‖ tip amount prior to

prompting for the tip amount.
Valid Values:

0 – The customer is not prompted to enter a tip amount (Default)

1 – The customer is prompted to enter a tip amount.

2 through 99 – The PINpad will calculate a ―suggested‖ tip amount and
display it on the PINpad prior to prompting the customer for the tip amount.

The integer value passed in represents the percentage that will be used to

calculate the tip. For example, 20 would calculate a 20% tip amount. The

customer would see this ―suggested‖ tip amount and would then be
prompted to key in the actual tip amount.

PCCharge Version 5.9.0
Updated 2/8/2010

 252

Property Name Data Type Description – SC550.clsInteracReq Class Properties

TrackII String
Set this property to the track II data from the magnetic stripe of the card.

For example: ;1234123412341234=08121234123412340001?

TransCode
GPSTransCo
de

Set this property to the type of transaction being processed. This should be

set to the same transaction type specified in the TransNameID property.

0 or ENUM_TCODE_PURCH_NORM – Purchase (default)

4 or ENUM_TCODE_REFUND – Refund

TransNameID GPSTransID

Set this property to the type of transaction being processed. The property

indicates to the PINpad to displays the type of transaction being processed to
the customer. This should be set to the same transaction type specified in

the TransCode property.
Valid Values:

0 or ENUM_TID_PURCH – Displays ―PURCHASE‖ (default)

1 or ENUM_TID_REFUND – Displays ―REFUND‖

VFISerial String
After the ParseResponseData method has been called, this property will
contain the PINpad‘s Chip Serial Number.

 These properties must be set prior to calling the BuildInteracRequest method.

 These properties will be set after the ParseResponseData method completes successfully.

SC550.clsInteracReq Class Methods

Property Name
Returned
Value

Description – SC550.clsInteracReq Class Methods

BuildInteracRequest String

Builds and returns the Interac request string that will be sent to the PINpad.

The properties in the SC550.clsInteracReq Class Properties table that are

marked with a must be set prior to calling this method.

BuildRemacData String Used internally

ClearData None The ClearData method will clear the values in all properties.

ParseResponseData Boolean

Parses the Interac response string returned by the PINpad. The response

string is returned by the PINpad in the DeviceData property of the

PinSC550 class. If the string is parsed successfully, TRUE is returned,

FALSE otherwise. When the string is parsed successfully, the properties

marked with a in the SC550.clsInteracReq Class Properties table will be

populated with the customer entered data.

PCCharge Version 5.9.0
Updated 2/8/2010

 253

SC5X.OCX

The SC5X.OCX allows integration to the Verifone SC5000 PINpad. The Verifone SC5000 PINpad is only

used when performing Canadian Debit transactions with Chase Paymentech (GSAR).

Refer to the section Canadian (Interac) Debit Transactions (see page 112) for more information on

using SC5X.OCX to integrate Canadian Debit transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 254

SC5X.OCX Properties

Property Name Data Type Description – SC5X.OCX Properties

Action String Transaction Action Code

Amount String Transaction Base Amount

Baud String
Baud Rate used to communicate with the PINpad.

Default Value: ―9600‖

Command String Transaction Action Code

CommMethod Integer

Defines the Method that the OCX will send the transaction to PCCharge

0 – INX File Method

1 – TCP/IP (For Future Use)

DataBits String
DataBits used to communicate with the PINpad.

Default Value: ―8‖

Parity String

Parity used to communicate with the PINpad.
Valid Values:

E – even

O – odd

N – None (default)

PinPadTimeout String
Timeout value for the PinPad

Default Value: ―5‖

Port String
Port Number to be used to communicate with PINpad.

Default Value: ―COM1‖

IPAddress String
The IP address of PCCharge. Only used when using the TCP/IP portion of the

SC5X.OCX – For Future Use

TcpIPPort String
The port used to communicate with PCCharge. Only used when using the
TCP/IP portion of the SC5X.OCX – For Future Use

ServerPath String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to setting the AutoProcess property to TRUE.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a ―\‖.

SurchargeAmount String
Surcharge Amount assigned to the transaction. This is inputted for each
transaction and is not to be included in the amount.

SwipeTimeout String
The amount of time the pinpad will wait for a card swipe.

Default Value: 255 (seconds)

Ticket String Ticket

TimeOut String
The Timeout value for the Transaction
Default Value: ―90‖

RequestTip Boolean

Used to determine if PINpad will prompt for gratuity. Only used with the S21

action code. Valid Values:

True - Prompt for gratuity
False - Do not prompt for gratuity

RequestCashBack Boolean

Used to determine if PINpad will prompt for cash back. Only used with the

S21 action code. Valid Values:

True - Prompt for cash back
False - Do not prompt for cash back

CommVisible Boolean

Used to determine whether the PINpad communication monitor is displayed

or hidden. Set to TRUE to display the monitor, FALSE to hide the monitor

(default). The communication monitor is typically used to troubleshoot an
integration to the PINpad. Note: Only for use in development environment.

 Must be set correctly prior executing the Initialize method

PCCharge Version 5.9.0
Updated 2/8/2010

 255

SC5X.OCX Methods

Method Name
Returned
Value

Description – SC5X.OCX Methods

Cancel None Cancels the transaction.

CancelPin None Cancels the pin pad request

Initialize None

Initializes PINpad. The properties in the SC5X.OCX Class Properties table

that are marked with a must be set correctly prior to calling the OpenPort

and Initialize methods. The initialize command will attempt to initialize
the PINpad 3 times prior to returning a response.

GetResult String Returns the result, which indicates the transaction‘s status upon completion.

GetApproved Boolean
The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result in
a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been
approved, and that the transaction has been placed in the open batch.

GetCashBack String Returns the cash back entered by the card holder.

GetErrorCode Long
The GetErrorCode method returns an error code if an error was
encountered during the use of various methods. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetReceipt String Returns the required receipt data, including tip amount.

GetRefNumber String

Returns the reference number associated with the transaction. The
reference number is used to help identify the transaction and is useful for the

cardholder and merchant when doing research. This value is not returned

with all transactions.

GetTipAmount String Returns the tip amount entered by the card holder.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD is

a PCCharge-assigned unique identifier that is associated with the transaction

throughout its ―lifespan‖. This number is stored in the TroutD field in the

PCCharge database (PCCW.MDB) for each transaction. See the section Follow
On Transactions for more information.

GetXMLResponse String Returns the Raw XML from the oux response

OpenPort None

Enables the port for PINpad. This method must be called first. The

properties in the SC5X.OCX Class Properties table that are marked with a

must be set prior to calling the OpenPort and Initialize methods.

Shutdown None Closes the port and shuts down the OCX timer.

PCCharge Version 5.9.0
Updated 2/8/2010

 256

Method Name
Returned

Value
Description – SC5X.OCX Methods

Send None

This method communicates with the Pinpad. Card number and expiration
date are not required to be assigned to the pinpad before calling this method.

This method requires the following properties of the OCX to be set:

 MerchantNumber

 Processor

 Action/Command

 Amount

 Path

The following properties are optional but must be set if used.

 Ticket

 CashBack

 SurchargeAmount

 CommMethod

 Language

 TroutD

 Timeout

 Baud

 Parity

 PinPadTimeout

Example: Send 3

RetrieveCreditSwipe Boolean

Once this is called, the Pinpad will have the MSR function called. The

merchant/customer swipes the card, then the pinpad gets reset to "ready". If

successful, the function returns true. Then, the integrator can call:

 GetCard

 GetMember

 GetExpDate

 GetTrack

If unsuccessful, the function returns false. Then, the integrator can call:

 GetErrorCode

 GetErrorDesc

RetrieveGiftCardSwipe Boolean

This is the same as RetrieveCreditSwipe, yet the processor code must be
passed in. Example: .RetrieveGiftCardSwipe("VLNK"). Once this is called,

the Pinpad will have the MSR function called. The merchant/customer swipes

the card, then the pinpad gets reset to "ready". If successful, the function
returnes true. Then, the integrator can call:

 GetCard

 GetMember

 GetExpDate

 GetTrack

If unsuccessful, the function returns false. Then, the integrator can call:

 GetErrorCode

 GetErrorDesc

PCCharge Version 5.9.0
Updated 2/8/2010

 257

SC5X.OCX Error Codes

ErrorCode ErrorDescription Description

-1 Port Open Error The OCX could not open the port to the pinpad

-2 Invalid Command The Command is not currently supported by the ocx

-3 Invalid Amount The amount was not set or was in an incorrect format

-4 Invalid Baud The baud was not set or was in an incorrect format

-5 Invalid Port The pinpad port was not set or was in an incorrect format

-6 Invalid Parity The pinpad parity was not set or was in an incorrect format

-7 Invalid Databits The pnpad databits were not set or was in an incorrect format

-8 Invalid Path The Path was not set

-9 Invalid Processor Processor is not supported for Interac with this OCX (currently

only Chase Paymentech)

-10 Invalid Merchant Number Merchant Number is not a valid Merchant Number for the

selected processor (currently only Chase Paymentech)

-11 Invalid Card Credit Only. This card does not pass the Luhn Check.

-12 Invalid Expiration Date Expiration Date is expired or invalid

-13 Chip Serial Number Error The OCX could not obtain the Chip Serial Number from the
Pinpad

-14 Key Change Request Was Required.

Retry Transaction.

A Current Key Request was required and has finished. Continue

with the original transaction.

-15 Card Swipe Error The card swipe did not return the correct information

-16 Confirm Amount Error There was an error in the Confirm Amount dialogue of the

pinpad.

-17 Surcharge Was Rejected The customer rejected the surcharge amount.

-18 Pin Error There was an error obtaining the Pin Block

-19 Initialization Error The OCX was unable to initialize the pinpad

-20 Invalid Swipe Timeout The passed in Swipe Timeout exceeds 255 seconds. This is the

length of time that the pinpad will sit at "Swipe Card"

-21 Card Swipe Timeout Card was not swiped within timeout value

Notes: In order to test Canadian Debit with Chase Paymentech (GSAR), the integrator will need to
obtain a test merchant account directly from Chase Paymentech (GSAR) and a VeriFone SC5000 PINpad
that is configured properly for use with Canadian Debit and the Chase Paymentech (GSAR) test
merchant account. MAC data is specific to the PINpad and merchant number. If EBT transactions will
be supported, a separate PINpad device is required.

PCCharge Version 5.9.0
Updated 2/8/2010

 258

Reporting

The Charge.OCX control may be used by integrators to submit report requests. A report request can
have PCCharge print a report to it‘s default report printer or have PCCharge generate a file containing
the report output. If generating a file, the PCCharge reporting interface supports three different file
types:

1. Portable Document Format (.pdf)
2. Rich Text Files (.rtf)
3. Standard Text files (.txt)

Note: The reporting interface cannot be configured to send reports directly to the screen.

The following outlines the properties used for submitting report requests to PCCharge with the
Charge.OCX control. The properties in Charge.OCX that are not documented below should be

left blank when submitting report requests.

Property Data Type Description – Charge.OCX Reporting Properties

Action Long

The action code that identifies what type of report will be requested. Valid

Values: 81-84. Example: If running a credit card detail report, set the action

code to ―81‖. Consult the section DevKit Constants for a list of valid values
(see page 141).

Card String

User name filter. If a valid user name is set in the Card property, the
report will be filtered by that user name. The report returned will consist of

only those transactions processed by the user name specified. Example:

“User1”. If this property is left blank, the report will show transactions
processed by all users.

CheckCard Boolean

Flag that indicates whether to activate credit card validity testing. Valid

Values: TRUE; FALSE. Default value: TRUE. This value must be set to

FALSE when submitting a report request.

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP
Please refer to page 20 for a description of these methods.

If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.

Note: See SSL Information on page 70 for more information.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where
PCCharge is running. Defaults to 127.0.0.1

Manual Long

Result filter. Use this filter to create a report consisting of only those

transactions with the result specified.

Valid Values: 0 = all (default), 1 = approved, 2 = declined Example: 1

Member String

Ending Date/Time filter. Specifies the end date and end time of the report.

Format: Date: MM/DD/YY Time: HH:MM:SS PM. When used in conjunction

with Street; will create a report consisting of only those transactions

processed between the start and end date/time specified (inclusive). If an
end date is not specified, today‘s date is assumed. If an end time is not

specified, 11:59:59 PM is assumed. The end date can be passed without the

end time. However, the end time cannot be passed without the end date.

Examples: “07/06/05 06:00:00 PM” or ―07/06/05‖

MerchantNumber String

Merchant Number filter. Set this property to filter the report by the

merchant number specified. Setting this property will generate a report
consisting of only those transactions processed via the merchant number

specified. To generate a report that includes all merchant numbers in

PCCharge, set this property to “ALL― or leave blank. Example:
“99999999911”

PCCharge Version 5.9.0
Updated 2/8/2010

 259

Property Data Type Description – Charge.OCX Reporting Properties

Path String

For use with File_Transfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing

the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a ―\‖.

PeriodicPayment String

Report Output setting. Determines if the report will be printed by PCCharge

or written to a file. Valid Values: ―0‖ = print to default printer specified in

PCCharge (default). ―1‖ = print to file using filename specified in TransID

and path specified in TRACK.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

Street String

Starting Date/Time Filter (Optional) Specifies the start date and start time

of the report. Format: Date: MM/DD/YY Time: HH:MM:SS PM. Use to create
a report consisting of only those transactions processed on or after the date

specified. If a start date is not specified, today's date is assumed. If a start

time is not specified, 12:00:00 AM is assumed. The start date can be passed

without the start time. However, the start time cannot be passed without
the start date.

Examples: "03/04/05 09:00:00 AM" or ―03/04/05‖

TimeOut Long

The number of seconds after which a timeout error will be returned from the

control. The count will start when the Send method is called. The default

timeout value is 90 seconds. It is highly recommended that integrators review
the section Timeouts (see page 59).

Track String

Destination Directory for Report File. Specifies the destination directory

where the report file will be generated by PCCharge (if PeriodicPayment

is set to "1").

Example: ―C:\My Documents\PCCReports\‖

Path Formats: UNC, MS-DOS(8 Characters) and Long. Max Length: 40
characters (if the Destination Directory is longer than 40 characters, use

CustCode for the additional characters. Must end with a "\" unless the

directory name will be continued in the CustCode property.

Note: If running in a Client/Server environment, this property is the path

from the server running PCCharge, not the client. For example, if a client

submitted a report request that specified ―C:\― as the destination directory,
the report would be written to the local hard drive of the server running

PCCharge, not to the client‘s hard drive.

CustCode String

Destination Directory for Report File (continued). Continuation of the
destination directory (if the directory name is greater than 40 characters).

Max Length: 25 characters. Must end with a "\"

TransID String

Report File name/Report File Type. Specifies the filename and extension of

the report file generated by PCCharge (if PeriodicPayment is set to "1").

Also determines what file type will be used when PCCharge generates the
report. To specify the file type, set the extension to one of the following:

.pdf – Create the report file in the Portable Document Format. Ex.
Report.pdf

.rtf – Create the report file in Rich Text. Ex. Report.rtf

.txt – Create a report file in flat text. Ex. Report.txt Default: .txt (If an

extension other than the ones listed is passed, the report will be returned as
flat text and a .txt extension will be added to the filename)

User String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page
62).

 These properties are required to submit a report request.

PCCharge Version 5.9.0
Updated 2/8/2010

 260

The following outlines the methods used to process report requests. The methods in Charge.OCX

that are not documented below will not be used when processing report requests.

Method
Returned
Value

Description - Charge.OCX Reporting Methods

Abort Boolean

The Abort method attempts to cancel the transaction in progress and will
return a Boolean value that indicates whether or not the transaction was

canceled. Note: This method is not available when integrating using FoxPro.

Use the Cancel method instead.

About MsgBox The About method will display the About box associated with the control.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is

recommended that this method be called:
a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called

c. prior to running the next transaction

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response

files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be

called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be triggered

and the GetErrorDesc method will give a brief description of the error.
Consult the section System Error Codes and Descriptions for a list of valid

error codes and descriptions that will be returned (see page 148). For use

only with File_Transfer CommMethod

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was
rejected.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions. For use only with File_Transfer CommMethod

PCCharge Version 5.9.0
Updated 2/8/2010

 261

Method
Returned

Value
Description - Charge.OCX Reporting Methods

Send Integer

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the control will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the
programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal use

only-- do not attempt to use any values other than the ones listed above.

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.
Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property
must be set before calling this Method.

Charge.OCX Events

Event Description - Charge.OCX Events

Error
The Error event is fired any time an error occurs in the control. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned (see page 148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has processed

the transaction successfully and has placed a file with the extension of .oux in the PCCharge directory. The name

of the .oux file will be what was set in the User property of the transaction request. Call the GetResult

method to determine whether or not the transaction was approved. A list of valid results can be found in the
Transaction Result Constants section (see page 154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send

method.

PCCharge Version 5.9.0
Updated 2/8/2010

 262

DLL (ActiveX) Method

A DLL called PSCharge.dll is included in the DevKit. This DLL allows developers to access various

processing functions using any Windows-based programming environment that supports referencing
ActiveX DLLs.

Before PSCharge.dll can be used, it must be added as a reference in the programming environment.

For example, in Microsoft Visual Basic 6, follow the procedure below:

1. Choose Project | References from the Visual Basic menu bar.

2. After the References window opens, from the list, scroll to and check the box next to:

 VeriFone‟s ActiveX Payment Server DLL

and click OK. (The DevKit installation registers the PSCharge.dll by default. If PSCharge.dll

is not yet registered on the system, use regsvr32.exe to register it, or use the Browse button on

the References window to register PSCharge.dll and add it as a reference to the project).

Once registered, PSCharge.dll provides the developer with several classes to allow the integration

of payment processing:

 Charge – contains properties and methods for credit card processing

 Debit – contains properties and methods for debit and EBT processing.

 Check – contains properties and methods for check processing.

 Gift – contains properties and methods for gift/loyalty processing.

 Batch – contains properties and methods for performing end-of-day inquiry and batch

settlement.

 Offline – contains properties and methods for processing offline transactions.

The properties and methods of the DLL‘s various classes can be viewed through the object browser. If
MS VB6 is not being used, refer to the language documentation for instructions on using ActiveX DLLs.

Note: The additional classes in PSCharge.dll that do not appear in the list above are currently not
supported for transaction processing.

Using PSCharge.dll

Create an instance of any of the DLL‘s classes by using the following line of code:

Set <instance name> = New <object name>

For example, to create an instance based on the Charge class, the following line of code would be

used in MS VB6:

Set Charge = New PSCharge.Charge

PCCharge Version 5.9.0
Updated 2/8/2010

 263

Charge Class

The Charge class provides integrators with properties and methods used to submit credit card

transactions to PCCharge. To use the Charge class to integrate transaction processing, follow the

procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
Charge Class properties table are the minimum required to process a Sale or Pre-Authorization
transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is

passed as a parameter to activate the XML message format)

4. Wait for the transaction to process and then call the various .Get methods to determine the

outcome of the transaction (code using the .Get methods may be placed immediately after the

Send method). The most important information can be acquired by calling the GetResult and

GetAuth methods. If an error occurs, call the GetErrorCode and GetErrorDesc methods to

determine the nature of the error.

5. Call the DeleteUserFiles method to delete all files related to the transaction.

6. Call the Clear method to reset all the properties and methods related to the transaction or
destroy the object.

Consult the section Pseudo-code (see page 156) for various examples that may be followed when using

the Charge class to perform transaction processing.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 264

Charge Class Properties

Property Data Type Description - Charge Class Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

AmxChargeDescription String

The American Express Charge Description. This is a general description

describing merchandise: the AMEX representative and the merchant will

decide on an appropriate description. Note: Only Required for Retail, MOTO

and Restaurant transactions when using AMEX direct settlement or TSYS Max
Length: 23 bytes

AmxDescription_1 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max
Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AmxDescription_2 String

American Express Description data. Additional description or information
about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes
This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AmxDescription_3 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:
Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes

This field is optional and should only be provided if the transaction will be
settled directly with Amex or TSYS

AmxDescription_4 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max
Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AuthCode String

The Authorization code. This value is returned by the issuing bank and
should only be set in a transaction request if processing a Post-Authorization

and the Post-Authorization is being used to add a Voice-Authorization to the

batch or to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The AuthCode property does not need to be
set if the Post-Authorization completes a standard Pre-Authorization using

the TroutD value of the Pre-Authorization. See the section Follow On
Transactions for more information (see page 70).

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the
transaction is being ran for payment of a bill (ultilty, monthly gym dues,

etc.) Valid values:

0 – Non-Bill payment transaction

1 – Bill payment transaction

PCCharge Version 5.9.0
Updated 2/8/2010

 265

Property Data Type Description - Charge Class Properties

Card String

The credit card number that will be used when processing the transaction.

Max Length: 20 characters. Example: 5424180279791765
NOTE: Is it the integrator‘s responsibility to remove spaces in the card

number if there are spaces in the Track II card number data.

CardPresent String

For Retail or Restaurant transactions: Flag that indicates whether the card

was present.
For eCommerce transactions: Flag that indicates what type of transaction

occurred.

Valid values:

0 = Card not present, 1 = Card present (for Retail, MOTO, or Restaurant);

D = Digital goods, P = Physical goods (for eCommerce)

CheckCard Boolean

Flag that indicates whether to activate credit card validity testing. Valid

Values: TRUE; FALSE. Default value: TRUE. This value must be set to

FALSE when performing Follow on transactions such as Voids or Gratuities

because the card number is omitted from these transaction requests.

Command String

The action code that identifies what type of transaction will be performed.

Valid Values: 1-10, 13-15, ZI, ZH. Example: If running a credit card sale, set

the action code to ―1‖. Consult the section DevKit Constants for a list of

valid values (see page 141). Note: Because the Action property is defined

as ―long‖, this property was added to allow action codes that contain strings

(such as Transaction Inquiry - ZI). If the Command property is set, it‘s value

will override the value set in Action.

CommercialCardFlag String

The type of commercial card being submitted. The

getCommercialCardType method should be used to retrieve the 1
character value from PCCharge that indicates what type of commercial card

will be submitted. See the section Commercial Card Transactions (see page
94) for more information. Max Length: 1 character

Valid values:

B – Business

P,L,G -- Purchase

C – Corporate

F – Fleet

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP
Please refer to page 20 for a description of these methods.

If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

CustCode String

Customer code for purchasing/commercial cards. This property must be set
for commercial card transactions in order to get the best discount rate.

Additionally, the transaction‘s action code must indicate that the transaction

is a commercial card transaction. Note: Global East (NDC), terminal based,
requires the customer code be all upper case. Max Length: 25 characters,

alphanumeric only.

CreditPlanNumber String
The credit plan number, only applicable when using Citi as the processor for

private label cards.

CVV2 String

The CVV2 value for the transaction. The card verification value (CVV2 for
Visa, CVC2 for MasterCard, and CID for AMEX and Discover) is a 3 or 4 digit

number that is embossed in the signature panel for Visa, MasterCard, and

Discover and on the front of the card for AMEX. All AMEX cards utilize a 4

digit CID. Max Length: 4 characters. CVV2 should only be passed on non-

swiped transactions.

Demo Boolean

The demo mode flag. In demo mode, a simulated response is returned in
which even amounts return approved, and odd amounts return declined.

Valid Values:

TRUE – Activates demo mode

FALSE – Deactivates demo mode (default)

DEST_ZIP_CODE String

Destination Zip Code for American Express purchasing/commercial cards. This

property must be set for American Express commercial card transactions

when using American Express as the processor (or via split dial) in order to

get the best discount rate. Additionally, the transaction‘s action code must
indicate that the transaction is a commercial card transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 266

Property Data Type Description - Charge Class Properties

DriverID String
Driver identification field. Only required for Wright Express, Voyager and

Fleet One cards.

DriverPIN String Driver personal identification number. Only required for Fuelman cards.

EstGratuityAmount String

For use with Restaurant transactions only. The estimated gratuity amount

for a Sale (action code 1) or Pre-Authorization (action code 4) transaction.

If the EstGratuityAmount is populated, PCCharge will submit the sum of

the values in the Amount and EstGratuityAmount fields for authorization.

If the transaction is authorized, only the value in the Amount field will be

placed in the PCCharge settlement file (if running a Sale). By using the

EstGratuityAmount, the merchant can help ensure that the customer has

enough available credit on their card to leave a tip. Once the customer
indicates the amount of the tip that will be left, a gratuity transaction

(action code 13) must be performed on the sale prior to settlement in order

to add the actual gratuity to the transaction. Format: DDDDDD.CC. Max
Length: 9 characters, including the decimal. The value may not be

negative. Note: The amount MUST include the decimal point and the cents

even if the amount is a whole dollar amount. Example: ―3.00‖, not ―3‖ or

―3.‖. If sending less than one dollar, the zero place holder must be sent as
well. See the section Restaurant Transactions (see page 104) for more

information. Note: It is recommended to check with the processor or

merchant service provider for guidance on what amount to set this value to.

Incorrectly setting this value can result in downgrades.

ExpDate String

The expiration date associated with the credit card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.
Note: See SSL Information on page 70 for more information.

GratuityAmount String

For use with Restaurant transactions only. The actual gratuity amount for
a Sale with Gratuity (action code 14) , Gratuity (action code 13) , or Post-

Authorization (action code 5) transaction. See the section Restaurant

Transactions (see page 104) for more information.

IDNumber String

Only required for Voyager cards, dependant on Restriction Code. Four to six
digits. Note: Only used for Pre-Authorization transactions

Update: Beginning with PCCharge version 5.8, this is also used for Citi©

Private Label.

Index Long

The Merchant Number index. If Index is set to a value greater than 0, the

Charge class will access the file tid.pcc file and use the merchant number

at that index in the file. Index and Path should be set prior to calling the

GetCompanyCity, GetCompanyName, GetCompanyState,

GetCompanyStreet, or GetCompanyZip methods. The index of the
merchant number is determined by the order that it was added to PCCharge.

For example, the first merchant number added to PCCharge will have an

index of ―1‖, the second, ―2‖, etc.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where
PCCharge is running. Defaults to 127.0.0.1

ItemID String

The Item ID for the transaction. This field is only used for Chase Paymentech

(GSAR) and can store five (5) four-digit codes that are defined by Chase

Paymentech. Example: If the ItemID is set to 00010002000300040005, it

stores 5 item IDs (0001, 0002, 0003, 0004, and 0005). These numbers
must be obtained from Chase Paymentech.

LastValidDate String

The last year that will be considered a valid expiration date. Currently, the

default value in the charge class is ―09‖. It is recommended that a setting is
provided by which the end-user can change this property; otherwise, in the

future, end users will require a new PSCharge.dll to be distributed to

resolve expiration date issues. Length: 2 digits. Format: YY Example: If

LastValidDate is set to 05, then cards between 06 and 99 are considered

to be 1906 to 1999, and cards between 00 and 05 are 2000 to 2005.

Manual Long

Flag that indicates whether the transaction was manually entered or swiped.

If the transaction was swiped, the Track property must also be set. Valid

values: 0 = manual transaction, 1 = swiped transaction

PCCharge Version 5.9.0
Updated 2/8/2010

 267

Property Data Type Description - Charge Class Properties

MCSC String

The Multiple Count Sequence Count. This is the total number of installments

that will be charged in a non-restaurant recurring billing scenario. Max
Length: 2 characters. Example: If there are 5 payments to be made, set this

property to ―5‖.

MCSN String

In a restaurant environment: The server or cashier id. Max Length: 2. This
field should be passed for reporting and reconciliation purposes. See the

section Restaurant Transactions (see page 104) for more information.

Processor specific note: The Server ID is required for AMEX card
transactions. Also required when using the processor NB and GSAR in

restaurant business type.

In a non-restaurant environment, this field is the Multiple Count Sequence
Number. This is the transaction number within the total number of payment

installments in a recurring billing scenario. Max Length: 2 characters.

Example: If there are 5 payments to be made and this transaction is the first

transaction, set this property to ―1‖. The first transaction should also

include the CVV property, but this value should not be stored or sent for
subsequent transactions.

Member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property
must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MTS Boolean No Longer Supported.

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this
value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

Odometer String
The odometer reading. Only required for Fleet One (7 digits), Voyager (7

digits), and Fuelman (6 digits) cards.

OffLine String

Flag that indicates whether PCCharge should process the transaction offline.

If the offline flag is set, PCCharge will put the transaction into a .BCH file
that resides in the PCCharge directory for importing at a later time. The file

can only be imported from the PCCharge GUI. Valid values: 1 = TRUE, 0
= FALSE

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction
response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing
transactions.

Path String

For use with File Transfer CommMethod only. The path to the directory in
which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing
the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a ―\‖.

PeriodicPayment String

Flag that indicates whether the transaction is a recurring transaction. Valid

values: 1 = TRUE, 0 = FALSE Note: If periodic payment is set to true,

the recurring billing properties must also be set to achieve the best

processing rates.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

PCCharge Version 5.9.0
Updated 2/8/2010

 268

Property Data Type Description - Charge Class Properties

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

Processor *** String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a
valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

ProductDetailAmount_XX String

Note: Only required for the processor NBS. This is the total dollar amount

for PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.
For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a PRODUCT_DETAIL_UNIT_PRICE_1 =

$2.00, therefore the PRODUCT_DETAIL_AMOUNT_1 = $4.00

ProductDetailCount String
Note: Only required for the processor NBS. All card types are configurable
except for Fleet One which is limited to 7 records. Only 1 – 10 records are

currently supported through PCCharge for all card types.

ProductDetailCode_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

ProductDetailQuantity_XX String

Note: Only used for the processor NBS. This is the unit price for

PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and
Fuelman. Currently, PCCharge will support 1 – 10.

Reference String

The reference number from the original transaction (returned by the

processor). Set this property only if processing a Post-Authorization and the

Post-Authorization is being used to add a Voice-Authorization to the batch or
to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The Reference property does not need to be
set if the Post-Authorization completes a standard Pre-Authorization using

the TroutD value of the Pre-Authorization. See the section Follow On
Transactions for more information (see page 70). Max Length: 8 characters.

Note: NBS/ Fleet One cards require a Reference Number to be sent with

each transaction. This is a minimum of 2 digits and a max of 15. This must
be all numeric.

RestrictionCode String

Only required for Voyager cards. This is used to determine the level of

identification and which fields are required. Two digits.

Valid Values:
00 - No ID Number or Odometer required. Fuel and Other allowed.

01 - No ID Number or Odometer required. Fuel only allowed.

10 - ID Number only required. Fuel and Other allowed.
11 - ID Number only required. Fuel only allowed.

20 - Odometer only required. Fuel and Other allowed.

21 - Odometer only required. Fuel only allowed.

30 - ID Number and Odometer required. Fuel and Other allowed.
31 - ID Number and Odometer required. Fuel only allowed.

Note: Required for both manual and swiped transactions.

RFID String

Set to 1 if card information was read from RFID (Radio Frequency

Identification) device. If card was read from from RFID, track data must be
populated and manual flag must be set to 1. Set to 0 otherwise.

Store String

Flag indicating whether a Voice Authorization transaction should be stored.

This flag should only be submitted when performing a Post-Authorization

transaction (action code 5) that includes an authorization code from the
voice operator. For more information on stored Voice-Authorizations, see

page 92. Valid Value: 1 - Store the Voice Authorization transaction.

Street String

The cardholder's billing street address. The Street property is used for

address verification. Address verification can only be performed on non-
swiped transactions. For FDC: Use first 5 digits only. Note: For manually

keyed transactions, Street is required to qualify for the lowest transaction
rates. Max Length: 20 characters

Citi© - When used with Citi Plan PO Box‘s are not allowed.

PCCharge Version 5.9.0
Updated 2/8/2010

 269

Property Data Type Description - Charge Class Properties

TaxAmt String

The tax amount. This is the portion of the amount that is tax. Providing the

tax amount is required to obtain the best rate on commercial card
transactions. Max Length: 9 characters (including the decimal). Format:

DDDDDD.CC. The transaction's action code must indicate that it is a
commercial transaction. Tax amount should be included in the amount field.

TaxExempt Boolean

Tax Exempt Flag. This flag is used to indicate if the purchase is tax exempt.

Used only for Commercial Card Transactions. Valid Values: 1 – Purchase is

tax exempt; 0 – Purchase is not tax exempt.

Ticket String

The ticket or invoice number for internal referencing by merchant. This
value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: For manually

keyed transactions, Ticket is required to qualify for the lowest transaction
rates. Note: When using NDC, lower case characters must not be used in the

ticket number. Note: When using Elavon (NOVA), ticket numbers can only be
alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

class. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly
could cause reconciliation issues and problems such as double-charging a

customer‘s account.

TotalAmount String No longer needed

Track String

The track II data captured from the magnetic strip of the credit card. The
track II data is required to ensure the lowest per-transaction rate from the

processing company when performing swiped transactions (Retail and

Restaurant). Sending the track II data is not allowed if the merchant's
industry type is MOTO or eCommerce. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

Alternatively, the GetParseData method can be used to parse the track

data and set the Card, ExpDate, and Track properties automatically.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖
transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

VehicleID String
Only required for Wright Express cards (5 digits) and Voyager cards (8 digits).

Note: Required for both manual and swiped transactions.

XMLtrans Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtrans property. See the

description for the Send method for more information.

Zip String

The cardholder's zip code. The Zip property is used for address verification.
Max Length: 9 digits. Address verification can only be performed on non-

swiped transactions. Note: For manually keyed transactions, the Zip is
required to qualify for the lowest transaction rates. Note: If submitting the

9-digit zip, do not include the dash.

Citi© - When used with Citi Plan the zip is limited to 5-digits.

CfgType Long

The database archive configuration type setup in PCCharge. Valid value:
Currently, only 0 is supported.

0 = CFG_TXN_ARCHIVE = Configure Transaction Archive. Use action code ZC.

CfgEnabled Boolean
Enable or disable current database archive configuration (1 = Enable, 0 =
Disable).

PCCharge Version 5.9.0
Updated 2/8/2010

 270

Property Data Type Description - Charge Class Properties

CfgPath String
Specify path for saved output files (Example: backed up transaction

database). Must end with a backslash ―\‖.

CfgSizeLimit String
Transaction archive size limit for GUI archive prompting and validation.
Specified in megabytes.

CfgKeepDays String

Transaction archive preservation range. All transactions within the past

number of ―keep days‖ will remain in the pccw.mdb database following a

transaction archive command.

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

NewCashierPassword String

Submit a new password for the Target Cashier.

Note: case-sensitive

Must be complex:

 minimum 7 characters

 must have at least one upper case character

 one numeric character

one special character (e.g., @, $, %, etc.)

NOTE: See Cashier Permissions on page 75 for an example.

NewCashierConfirmPassword String
Resubmit the password for verification. Note: Must match the original
NewCashierPassword

NOTE: See Cashier Permissions on page 75 for an example.

AddCashier1 String
Allows the integrator to submit new cashiers up to 5 at a time. Requires 3

Name Value pairs to be entered for each AddCashier tag submitted.
CASHIER_NAME <Name>

PASSWORD <Password>

PERMISSIONS <Permissions>

Example:

<ADD_CASHIER_1>CASHIER_NAME CreditR PASSWORD CreditR123%

PERMISSIONS 10000|000|000|000|000000000000|0000|000000

</ADD_CASHIER_1>

NOTE: See Cashier Permissions on page 75 for an example.

AddCashier2 String

AddCashier3 String

AddCashier4 String

AddCashier5 String

TargetCashierName String

Submitted when performing a function to edit a cashier‘s settings. This

specifies which cashier‘s information to alter.
NOTE: See Cashier Permissions on page 75 for an example.

CustomerFirstName
1
 String Applicant‘s first name.

MiddleInitial
1
 String Applicant‘s middle initial.

CustomerLastName
1
 String Applicant‘s last name.

Suffix
1
 String Applicant‘s suffix. (Ex. M.D., Ph.D, Jr.)

AptSuite
1
 String Applicant‘s apartment or suite number.

CustomerCity
1
 String Applicant‘s city.

State
1
 String Applicant data. (Ex: GA, FL, MA…)

Email
1
 String Applicant data. (Ex: XXX@XX.XXX)

Phone_Number
1
 String Applicant data. Format xxxxxxxxxx 10-digits No Dashes

SSNum
1
 String Applicant data. Format xxxxxxxxx 9-digits No Dashes

Birth_Date
1
 String Applicant data. Format is MMDDYYYY.

EmpName
1
 String Applicant data. Employer name.

WorkPhoneNumber
1
 String Applicant data. Employer phone number.

HomeOwner
1
 String

Applicant data.

Format:

'O' = Own

'R' = Rent

'B' = Board
'P' = Live w/ parents

'M' = Military

AnnualIncome
1
 String

Applicant data. Format: Up to 6 digits. Whole dollar amount with no

decimals.

PhotoIDState
1
 String Applicant data. (Ex: GA, FL, MA…)

PCCharge Version 5.9.0
Updated 2/8/2010

 271

Property Data Type Description - Charge Class Properties

CorrelationUID
1
 String Received as a response to a Credit App (P3)

PendingNumber
1
 String Received as a response to a Credit App (P3)

ReplyFlag
1
 Boolean

Reply notification.

Format:

Y = Accept

N = Decline

SourceCode
1
 String

Citi Plan

Format:

Opt In – ―AP‖
Opt Out – ―AO‖

IDType
1
 String

Applicant data. Type of identification being submitted.

Format:
‗D‘ – Driver‘s License

‗O‘ - Other

FraudFlag
1
 Boolean

Code 10.

Values are 1 or 0: 1 = True, 0 = False

HealthCareAmount

String

Total Healthcare Amount. This amount must be greater than or equal to the

sum of the other amount categories. Max: 12 - digits

Format: DDD.CC

PrescriptionAmount
#
 String

(Optional) Total amount of the prescription-related healthcare expenses in
this transaction. Max: 12 - digits

Format: DDD.CC

VisionAmount
#
 String

(Optional) Total amount of the vision-related healthcare expenses in this

transaction. Max: 12 - digits
Format: DDD.CC

ClinicAmount
#
 String

(Optional) Total amount of the clinic-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

DentalAmount
#
 String

(Optional) Total amount of the dental-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

TransitAmount
#
 String

(Optional) Reserved for future use. Max: 12 - digits
Format: DDD.CC

CopayAmount
#
 String

(Optional) Reserved for future use. Max: 12 - digits

Format: DDD.CC

FSA
#
 Boolean

Indicates the transaction is FSA. This will bypass PCCharge BIN checking as

PCCharge will assume that the POS has verified that this card has met the BIN
requirements for an FSA transaction.

1 = True, 0 = False

Note: If this is not passed it defaults to False.

 These properties are the minimum required to process a Sale or Pre-Authorization transaction.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators
review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the Processor and MerchantNumber

properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The
―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, Processor and

MerchantNumber should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page

70) for more information.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page 115.

Additional tags used to process FSA/HRA transactions. For more information please see the section about FSA on page 98.

PCCharge Version 5.9.0
Updated 2/8/2010

 272

Charge Class Methods

Method
Returned

Value
Description - Charge Class Methods

AddMatch String

The AddMatch method returns a string representation of the address

verification response received from PCCharge. The address response code

will be used to determine what string should go into AddMatch.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be

canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is

recommended that this method be called:
a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called

c. prior to running the next transaction

CommercialCardType String

The CommercialCardType method is used to determine whether or not a

credit card is a commercial card. CommercialCardType requires that a
string parameter, the credit card number, is passed when calling the

method, that the Path property is set to a valid PCCharge directory, and

that a valid Bin.mdb database resides in that directory.

CommercialCardType returns TRUE if the BIN range of the card appears in

the Bin.mdb database, FALSE if it does not.

CVV2Match String

The CVV2Match method returns a string representation of the card

verification response that is received from PCCharge. The card verification
response code will be used to determine what string should go into

CVV2Match.

DeleteUserFiles None

For use with File Transfer CommMethod only. The DeleteUserFiles
method attempts to delete all request and response files associated with the

transaction. It will delete the files based on the value set in the User

property. The DeleteUserFiles method should be called after the results
have been retrieved from the transaction. If an error occurs while

attempting to delete the files the GetErrorDesc method will give a brief
description of the error. Consult the section System Error Codes and

Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetAcctDataSrc String Returns the entry method of the transaction.

GetACI String

Returns the VPS indicator to indicate wherever the card is a VISA, MC or

AMEX card PS2000 data. This value is not returned by all processing

companies.

GetAddText1 String
Only supported on Fleet One, this field contains miscellaneous additional
text returned from host. Currently PCCharge will support GetAddText1-

GetAddText4.

GetAmountDue String

Returns the amount due, only for Elavon (NOVA) pre-paid and FSA

functionality. Format is DDD.CC

Note: ―Enable Pre-Paid Cards‖ option within PCCharge MUST be checked for

this feature to work. The option is located under Setup>Credit Card
Company>Extended Data and only with the Credit Card Company set to

Elavon (NOVA). This option is only configurable in PCCharge version 5.7.1

release I sp9a and above.

Note: For this to work with FSA transactions, one must enable FSA and

Partial Auth within the Extended Data Screen for supported processors.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

GetAuthAmount String
Used in partial redemption transactions where only part of the amount was

authorized. Returns the actual authorized amount.

PCCharge Version 5.9.0
Updated 2/8/2010

 273

Method
Returned

Value
Description - Charge Class Methods

GetAVS String

Returns the AVS response code from the issuing bank. If performing Address
Verification on card-not-present transactions, this code indicates how well

the AVS information passed in matches what the issuing bank has on file for

the cardholder. Consult the section DevKit Constants for a description of

values that may be returned (see page 141)

GetCCAvailBalance String

Pre-paid credit cards with Elavon (NOVA) - Returns the PrePaid card

balance.

FSA – Returns the available balance on the FSA/HRA card.

Format: DDD.CC

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result
in a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been
approved, and that the transaction has been placed in the open batch.

GetCardIDCode String Returns a code that is used to verify the identity of the cardholder.

getCommercialCardType String

The getCommercialCardType method requires a string parameter, the
credit card number, and will determine the credit card number‘s commercial

card type. This method requires that the Path variable be set to a valid
PCCharge directory and it uses the Bin.mdb database in the PCCharge

directory to determine the commercial card type.

Valid return values:

B – Business

P,L,G -- Purchase

C – Corporate

F – Fleet

Example: getCommercialCardType(“4055011111111111”) will return

―P‖.

GetCompanyCity String
The GetCompanyCity method returns the city of the merchant that is

registered in PCCharge. The Index and Path properties must be set
correctly for this method to work.

GetCompanyName String
The GetCompanyName method returns the company name of the merchant

that is registered in PCCharge. The Index and Path properties must be set

correctly for this method to work.

GetCompanyState String

The GetCompanyState method returns the state of the merchant that is

registered in PCCharge. The Index and Path properties must be set
correctly for this method to work.

GetCompanyStreet String
The GetCompanyStreet method returns the street address of the merchant

that is registered in PCCharge. The Index and Path properties must be set

correctly for this method to work.

GetCompanyZip String

The GetCompanyZip method returns the zip code of the merchant that is

registered in PCCharge. The Index and Path properties must be set
correctly for this method to work.

GetCreditCardIssuer String

The GetCreditCardIssuer method returns the abbreviation of the credit

card issuer's name for the card number that is present in the Card property.

Consult the section DevKit Constants for a description of values (see page
141).

GetCreditCardType String

The GetCreditCardType method returns either the abbreviation of the

credit card issuer of the card that is present in the Card property, or the

optional card parameter that is passed to the GetCreditCardType method.
Consult the section DevKit Constants for descriptions of values (see page

141). (GetCreditCardType is the same as GetCardIssuer).

GetDCAvailBalance String
Returns the available balance on pre-paid debit cards. Only for pre-paid

debit cards with Elavon (NOVA).

GetCVV2 String

Returns the CVV2/CVC2/CID response code from the issuing bank. If

performing CVV2/CVC2/CID validation on card-not-present transactions, this
code indicates if the CVV2/CVC2/CID code passed in matches what the

issuing bank has on file for the cardholder. Consult the section DevKit

Constants for a description of values that may be returned (see page 141)

PCCharge Version 5.9.0
Updated 2/8/2010

 274

Method
Returned

Value
Description - Charge Class Methods

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see
page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetEstGratuityAmount String
The GetEstGratuityAmount returns the estimated gratuity amount of the
original transaction.

GetGratuityAmount String
The GetGratuityAmount returns the gratuity amount of the original
transaction.

GetHostType Integer

The GetHostType method returns an integer that indicates if a processor /

merchant number is Host based or Terminal based. GetHostType requires

three parameters:
1) Processor code - Consult the section DevKit Constants (see page

141) for a list of valid processor codes

2) Merchant account - Must be a valid merchant account set up in

PCCharge

3) TID type - Valid Values for TID type: 0 – Credit; 1 – Check; 2 –

Debit; 3 – EBT; 4 – GiftCard

GetHostType will return one the following values based on the parameters
passed in:

0 – The processor is Host based

1 – The processor is Terminal based

-1 – The processor is a Hybrid (supports both Host and Terminal processing)
or invalid processor / merchant number.

Example: .GetHostType(“VISA”, “999999999911”, 0) will return 0
Note: Chase Paymentech (GSAR), Elavon (NOVA), and FDMS South / NaBanco

(NB) are considered hybrid processors. GetHostType will return a -1 for
these processors.

GetIND String
Returns the IND code. The IND code is a transaction description code and an
Interchange compliance field. This value is not returned by all processing

companies.

GetIndex Long

The GetIndex returns the index of the Processor and MerchantNumber

combination that is stored in PCCharge file tid.pcc. The GetIndex

function will not work property if valid Path, Processor, and

MerchantNumber properties are not provided.

GetItemID String The GetItemID echoes the item ID from the original transaction.

GetMSI String

Returns the Market Specific Indicator. This value indicates the transaction‘s

market segment. This value is assigned by the card associations and is not
returned with all transactions.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetParseData String

The GetParseData method will parse a string (containing credit card track

data) passed to it and populate the Card, ExpDate, and Track properties

with the appropriate data. GetParseData will return an integer indicating

its success. Valid return values: 0 (error parsing data), 1 (track I successful),

or 2 (track I & II successful).

GetPLProcessor String
Retrieves the private label Processor ID currently setup in PCCharge. The

.path property must be specified.

GetPLMerchantNumber String
Retrieves the private label Merchant Number currently setup in PCCharge.

The .path property must be specified.

GetPCard String
The GetPCard method returns the PurchaseCard field from the .oux file.

Not all processors support this field. Valid Values: 1 = purchasing card, 0 =
otherwise

GetPEM String
Returns the Point of Entry Mode that is associated with the transaction. This

value is not returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 275

Method
Returned

Value
Description - Charge Class Methods

GetPS2000 String

PS2000 Data. This data will be as received during the original authorization
processing. It will not be present for offline transactions. PS2000 Data is a

variable; it will either be one character or up to 20. It is data concerning the

card type and transaction that the processor will send back during the

authorization process. This value is not returned by all processing
companies.

GetRecordCount String The number of records matching the inquiry

GetReceipt String Only used for CITI private label cards. Returns the disclosure agreement.

GetRefNumber String

Returns the reference number associated with the transaction. The

reference number is assigned by the card associations. The reference
number is used to help identify the transaction and is useful for the

cardholder and merchant when doing research. This value is not returned

with all transactions.

GetRespCode String
Returns the response code that is provided by the processor. This value is not
returned by all processing companies.

GetResponseCommercialType String
Returns the type of commercial card that was used for the transaction. This

value is not returned by all processing companies.

GetResponsePurchaseCardType String
Returns a flag indicating whether the processor indicated whether the card
was a Purchasing Card or not. This value is not returned by all processing

companies. Valid values: 1 = Purchasing Card, 0 = Otherwise

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of
valid values and descriptions.

GetRestrictCode String Note: Only supported on Fleet One. The product restriction code.

GetRet String
Returns the Retrieval reference number. This value is not returned by all

processing companies

GetTBatch String
Returns the active batch number for the transaction. This value is not
returned by all processing companies.

GetTDate String
Returns the date that the transaction was processed. This value is not

returned by all processing companies.

GetTerminationStatus String

Retrieves Termination Status which returns a ―6‖ upon successful

transaction. If anything other than a ―6‖ is returned there may be an issue
with the settlement file and should be investigated. This applies to : GSAR

and NBS

Response:
6 = Successful Transaction

GetTI String

This will indicate the transaction Identifier for VISA or AMEX, it will also

return the MC Bank Net reference if the card is a MasterCard. This value is

not returned by all processing companies.

GetTicket String
Returns the ticket number or invoice of the transaction. This value is echoed
back from the original transaction or is generated by PCCharge if one is

required to complete the transaction.

GetTICode String
Returns the validation code for VISA or the Bank Net Date if the card is a

MasterCard.This value is not returned by all processing companies.

GetTIM String
Returns the Time of the transaction. This value is not returned by all

processing companies.

GetTraceNumber String
Returns the trace number from the processor. Only for pre-paid credit cards
with Elavon (NOVA).

GetTitem String

Returns the Transaction Item number or the number that is associated with

the transaction in the settlement file. This value is not returned by all

processing companies.

GetTransRecord String
Contains nested XML tags providing information on transaction(s) pulled from

Trans table in the PCCharge database (pccw.mdb)

GetTransactionReferenceNumb

er
String

Returns the transaction reference number from the processor. Only for pre-

paid credit cards with Elavon (NOVA).

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 276

Method
Returned

Value
Description - Charge Class Methods

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can

be used to view the results of a Transaction Inquiry (ZI) transaction. Refer
to the section Transaction Inquiry (see page 127) for more information. The

text can also be used by integrators that wish to parse the results of the
transaction themselves or for troubleshooting purposes. Refer to the section

File Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file

associated with the transaction. The request (.inx) file contains XML string
data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

For use with File Transfer CommMethod only. The PccSysExists method
is used to determine if PCCharge is available to process transactions. If

PccSysExists returns TRUE, the file SYS.PCC exists in the PCCharge

directory and PCCharge is not available to process transactions. TRUE
usually indicates that PCCharge is either not running, is performing a batch

or database function, or is in an error state. The GetErrorCode and

GetErrorDesc methods will provide information as to why the file exists.
Consult the section System Error Codes and Descriptions for a list of valid

error codes that will be returned (see page 148). If PccSysExists returns

FALSE, then PCCharge is ready to process transactions.

Send Boolean

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the

action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the
section System Error Codes and Descriptions for a list of valid errors that

will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the

programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility

reasons.)

Valid values: (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3

Note: The other values that appear in the enumerated list are for internal
use only—do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean

The ValidCardLength method returns true if the card is of the correct

length. Otherwise, false will be returned. ValidCardLength has an

optional string parameter in which a card number can be passed. If the

parameter is blank, it will use the Card property.

ValidDate Boolean
The ValidDate method returns TRUE if the expiration date provided in the

ExpDate property is valid, or FALSE if it is not.

PCCharge Version 5.9.0
Updated 2/8/2010

 277

Method
Returned

Value
Description - Charge Class Methods

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.

Consult the section System Error Codes and Descriptions for a list of valid
errors that will be returned (see page 148).

VerifyCreditCard Boolean

The VerifyCreditCard method returns TRUE if the credit card number‘s

format is valid and meets the requirements set forth by the credit card

companies, FALSE if it does not. If FALSE is returned, use the

GetErrorCode and GetErrorDesc methods to determine the reason for

failure. VerifyCreditCard has an optional string parameter in which a
credit card number can be passed. If the parameter is left blank,

VerifyCreditCard will analyze the value set in the Card property.

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in

the ExpDate property is correct and in the right format, or FALSE if it is

not. VerifyExpDate calls the ValidDate function to validate the

expiration date. If FALSE is returned, check the error code to determine the

reason for failure. Consult the section System Error Codes and Descriptions
for a list of valid errors that will be returned (see page 148).

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.

Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property

must be set before calling this Method.

GetCurrentDBSize String Current transaction database size in bytes.

GetConfigDBSize

String Current configured size limit for transaction archive in bytes.

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

GetCorrelationUID
1
 String Returned from Citi, needed for Counter Offer Submission.

GetPendingNumber
1
 String Returned from Citi, needed for Counter Offer Submission.

GetReplyFlag
1
 String „Y‟ or „N‟ sent to Citi to notify message is a reply to an offer.

GetOpenToBuy
1
 String

Only present in the response if the ―Display OTB‖ is turned ON. Decimal is

included.

GetCreditLimit
1
 String Only present the in the response. Retrieves credit limit.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page

115.

PCCharge Version 5.9.0
Updated 2/8/2010

 278

Debit Class

The Debit class provides integrators with properties and methods used to submit debit card and EBT

transactions to PCCharge. To use the Debit class to integrate transaction processing, follow the

procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Retrieve pertinent data, such as the PIN, the Key Serial Number (if DUKPT), etc., from the PINpad.

3. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
Debit Class properties table are the minimum required to process a Debit Sale transaction.)

4. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is

passed as a parameter to activate the XML message format)

5. Wait for the transaction to process and then call the various .Get methods to determine the

outcome of the transaction (code using the .Get methods may be placed immediately after the

Send method). The most important information can be acquired by calling the GetResult and

GetAuth methods. If an error occurs, call the GetErrorCode and GetErrorDesc methods to

determine the nature of the error.

6. Call the DeleteUserFiles method to delete all files related to the transaction.

7. Call the ClearVariables method to reset all the properties and methods related to the

transaction or destroy the object.

When processing debit cards, a PINpad is required to allow the customer to enter their PIN. In
addition, debit card information is always collected via a card swipe device, never via keyboard entry.
Because of this, a card reader is also required. (Some EBT transactions can be manually entered).

When processing U.S. debit card transactions, merchants have the option of allowing the customer to
receive cash back on a transaction. For instance, the customer purchases $50 of products and wants
$25 cash back, set the Amount to 50.00 and CashBack to 25.00. This will withdraw a total of $75 from
the debit card account, $50 for the products and $25 for cash to give to the customer.

Consult the section Pseudo-code (see page 156) for various examples that may be followed when using

the Debit class to perform transaction processing.

For information on integrating Canadian Debit, see the section Canadian (Interac) Debit Transactions
(see page 112).

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 279

Debit Class Properties

Property Name Data Type Description – Debit Class Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.
Note: If performing an EBT Balance Inquiry transaction and providing an

amount, set this property to ―0.00‖.

AuthCode String
EBT Only: For an EBT Post (Prior Auth Sale) or Force transaction: The

Authorization code from the original voice authorization.

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the

transaction is being ran for payment of a bill (ultilty, monthly gym dues,
etc.) Valid values:

0 – Non-Bill payment transaction

1 – Bill payment transaction

Card String
The Debit/EBT card number that will be used when processing the
transaction. Max Length: 20 characters. Example: 5424180279791765

CashBack String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total
amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.

Max Length: 9 characters. Note: Some debit processors do not support the
cash back feature.

Command String
Because the Action property is defined as ―long‖, this property was added

to allow action codes that contain strings. This property is only used for
action code M1 (Key Change Request).

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP
Please refer to page 20 for a description of these methods.

If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

DebitType String

Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Set this to the bank account type that the customer

specified when entering transaction data into the PINpad.

 Valid Values: ―Chequing‖ or ―Savings‖

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.

Note: See SSL Information on page 70 for more information.

ExpDate String

The expiration date associated with the Debit/EBT card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

Set this property if there is an expiration date associated with the Debit/EBT

card.

FoodStamp Boolean
EBT Only: Indicates what type of EBT transaction will be performed. Valid

Values: 1 – Food stamp transaction; 0 – Cash benefits transaction

Gratuity String
Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. This is the Gratuity Amount of the transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 280

Property Name Data Type Description – Debit Class Properties

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where

PCCharge is running. Defaults to 127.0.0.1

KeySerialNumber String

If a Key Serial Number is returned from the PINpad, this property should be
populated with that number. If processing transactions with a PINpad using

DUKPT encryption, this value is sixteen or twenty characters long

(depending on the processor‘s encryption). The PCCharge DevKit provides
several tools for retrieving data from PINpads. If the PCCharge integration

method chosen doesn‘t support these tools or the tools do not support the

PINpad being used, a direct interface to the PINpad must be written by the

integrator. If processing transactions with a Verifone SC5000 PINpad, set
this property to the Chip Serial Number of the PINpad.

LanguageCode String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Set this to the language that is indicated by the
Language Code that is encoded in the track II data on the customer‘s card.

Valid Values:

―English‖ or ―French‖ (pass in the literal string)

MACData String
Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Set this to the MAC Block value returned by the

PINpad.

Manual Long

Flag that indicates whether the transaction was swiped or manually entered.

This property must be set to 1 (swiped) for Debit transactions or swiped EBT

transactions. If the transaction was swiped, the Track property must also

be set. If performing a manually keyed EBT transaction, such as a Force or
Voucher, set this property to 0 (manually entered).

Member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Debit Card Setup window or EBT Card
Setup window of PCCharge. Max Length: 32 characters. This value can be

alphanumeric.

OrigPurchData String

The Original Purchase Data. Used when performing a Debit Return with the

processors TSYS, Heartland, RBS WorldPay, and NPC. This is the original
transaction date. Format: DDMMhhmm

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction

response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be
caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing
transactions.

Path String

For use with File Transfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing
the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a ―\‖.

Pin String

The encrypted PIN block that is retrieved from the PINpad. The PIN is

provided to the processor for verification. Length: 16 characters. The

PCCharge DevKit provides several tools for retrieving data from PINpads. If
the PCCharge integration method chosen doesn‘t support these tools or the

tools do not support the PINpad being used, a direct interface to the PINpad

must be written by the integrator.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

ProductDetailAmount_XX String

Note: Only required for the processor NBS. This is the total dollar amount

for PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.

For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a PRODUCT_DETAIL_UNIT_PRICE_1 =
$2.00, therefore the PRODUCT_DETAIL_AMOUNT_1 = $4.00

PCCharge Version 5.9.0
Updated 2/8/2010

 281

Property Name Data Type Description – Debit Class Properties

ProductDetailCount String

Note: Only required for the processor NBS. All card types are configurable

except for Fleet One which is limited to 7 records. Only 1 – 10 records are
currently supported through PCCharge for all card types.

ProductDetailCode_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

ProductDetailQuantity_XX String

Note: Only used for the processor NBS. This is the unit price for

PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and

Fuelman. Currently, PCCharge will support 1 – 10.

Processor *** String

The code for the processing company that will be used to process the
transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed
in the Processing Company Codes section (see page 150).

Reference String

NBS/ Fleet One cards require a Reference Number to be sent with each

transaction. This is a minimum of 2 digits and a max of 15. This must be all

numeric.

RFID String
Set to 1 if card information was read from RFID (Radio Frequency
Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

ShiftID

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. The Shift ID. This value is optional. Format:
Alphanumeric Max Length: 1 character.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:
Not all processors support alphanumeric characters. Note: When using NDC,

lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

class. The count will start when the Send method is called. The default

timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly

could cause reconciliation issues and problems such as double-charging a
customer‘s account.

Track String

The track II data captured from the magnetic strip of the card. The track II

data is required for Debit transactions and for swiped EBT transactions. Max
Length: 40 characters.

Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

TransNum String No longer needed

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will
be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important
information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page
62).

Voucher String

EBT Only: The voucher number for an EBT force transaction. The voucher is

provided by the processor at the time of authorization and must be supplied

to clear the voucher.

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

CashierName String Submit Cashier‘s login name.

PCCharge Version 5.9.0
Updated 2/8/2010

 282

Property Name Data Type Description – Debit Class Properties

CashierPassword String Submit Cashier‘s password.

 These properties are required to process a Debit Sale transaction.

 These properties are required to process a Canadian Debit Sale transaction using Global Payments East (NDC) and the SC5000

PINpad.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the Processor and MerchantNumber
properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The

―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, Processor and

MerchantNumber should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page
70) for more information.

Debit Class Methods

Method Name
Returned

Value
Description - Debit Class Methods

ClearVariables None

The ClearVariables method will clear the values in all properties and
methods. It is recommended that this method be called:

a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called
c. prior to running the next transaction

DeleteUserFiles None

For use with File Transfer CommMethod only. The DeleteUserFiles
method attempts to delete all request and response files associated with the

transaction. It will delete the files based on the value set in the User

property. The DeleteUserFiles method should be called after the results

have been retrieved from the transaction. If an error occurs while

attempting to delete the files the GetErrorDesc method will give a brief

description of the error. Consult the section System Error Codes and
Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetApproved Boolean
The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned.

GetAuth String

For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was

rejected.

GetAuxRespCode String When using the SC5000 PINpad, returns the ISO response code

GetAvlBalance String
EBT Only: The GetAvlBalance method returns the available balance on the
EBT card. This value is not returned by all processing companies.

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result

in a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been

approved, and that the transaction has been placed in the open batch.

GetEBTCashBalance String
EBT Only: Returns the remaining balance on a Cash Benefits card. This value
is not returned by all processing companies.

GetEBTFoodBalance String
EBT Only: Returns the remaining balance on a Food Stamp card. This value

is not returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 283

Method Name
Returned

Value
Description - Debit Class Methods

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see
page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetMerchantInfo String

The GetMerchantInfo method returns a string containing all of the debit
merchant numbers and processors set up in PCCharge. The string will begin

with STX and will end with ETX. GS will separate each record, and FS will
separate fields within a record. Example:
<STX>CES <FS>000000927996296767<GS>GSAR<FS>

999999999999519<GS>VISA<FS>999999999911<ETX>

Refer to the section Multi-Merchant Support (see page 68) for more

information on the GetMerchantInfo method.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber
property.

GetMSI String
For Debit Master Session: Returns the new master key (if one exists) sent by

the processor that should be passed to the PINpad.

GetPOSSequenceNumber String

Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Returns the current POS Sequence Number for the

PINpad. The Path property must be set to the PCCharge directory and the
PINpad‘s Chip Serial Number must be passed as a parameter when calling the

GetPOSSequenceNumber method.

GetRefNumber String

Returns the reference number associated with the transaction. The
reference number is used to help identify the transaction and is useful for

the cardholder and merchant when doing research. This value is not

returned with all transactions.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetSurchargeAmount String

For GSAR Debit US only: Returns the surcharge amount that was charged by

the bank when using debit with GSAR. This value has to be called in order for
the developer to know how much the card was actually charged in addition

to the transaction amount and cash back.

GetTermFee String
The GetTermFee method returns the terminal fee that applies to the
transaction. The terminal fee is designated by the processor. Not all

processors return the terminal fee.

GetTI String
For Debit Master Session: Returns the new working key (if one exists) sent
by the processor that should be passed to the PINpad for the next

transaction. For GSAR EBT: Returns the ledger balance.

GetTraceNum String
The GetTraceNum method returns the trace number for the transaction that
was returned by the processor. Not all processors support this field.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file
contains XML string data. The text that is retrieved can be used by

integrators that wish to parse the results of the transaction themselves or for

troubleshooting purposes. Refer to the section File Method (see page 478)
for a description of the tags and values that are returned. Note: This

method must be called prior to calling the DeleteUserFiles method.

PCCharge Version 5.9.0
Updated 2/8/2010

 284

Method Name
Returned

Value
Description - Debit Class Methods

GetXMLRequest String

This method is used to echo the text that is sent in the request file
associated with the transaction. The request (.inx) file contains XML string

data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

For use with File Transfer CommMethod only. The PccSysExists method

is used to determine if PCCharge is available to process transactions. If

PccSysExists returns TRUE, the file SYS.PCC exists in the PCCharge

directory and PCCharge is not available to process transactions. TRUE
usually indicates that PCCharge is either not running, is performing a batch

or database function, or is in an error state. The GetErrorCode and

GetErrorDesc methods will provide information as to why the file exists.
Consult the section System Error Codes and Descriptions for a list of valid

error codes that will be returned (see page 148). If PccSysExists returns

FALSE, then PCCharge is ready to process transactions.

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the

programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only-- do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns true if the amount provided in the

Amount property is in a valid format (DDDDDD.CC). Otherwise,

VerifyAmount will return false. If false is returned, check the error code to

determine the reason for failure Consult the section System Error Codes and
Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 285

Check Class

The Check class provides integrators with properties and methods used to submit check verification,

guarantee, and conversion transactions to PCCharge. To use the Check class to integrate transaction

processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed. (The

properties marked with a in the Check Class properties table are the minimum required to
process a check verification transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

4. Wait for the transaction to process and then call the various .Get methods to determine the

outcome of the transaction (code using the .Get methods may be placed immediately after the

Send method). The most important information can be acquired by calling the GetResult and

GetAuth methods. If an error occurs, call the GetErrorCode and GetErrorDesc methods to
determine the nature of the error.

5. Call the DeleteUserFiles method to delete all files related to the transaction.

6. Call the Clear method to reset all the properties and methods related to the transaction or

destroy the object.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 286

Check Class Properties

Property Name Data Type Description - Check Class Properties

Account_Number String
For Check, MICR, or Double ID: The account number that will be used when
processing the transaction. Max Length: 20 characters.

Action String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with
leading zeroes.

Example: Incorrect format ―0001.00‖.

AdjustmentAmount String

Total amount of the transaction after adjustment (i.e. if the original

transaction was $5.00 and it should have been $50.00, the adjustment
transaction request should have the .Amount property set equal to 50.00).

Birth_Date String

The date of birth of the check writer. Length: Exactly six characters.

Format: MMDDYY. The birth date is required for DL (Driver‘s License) check

transactions.

Cash_Back String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total

amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some processors do not support the cash

back feature.

CashierNum String The Cashier Number

CheckType String
Valid Values: 0 = Personal check, 1 = Business check Note: Used only for

processor TECK. Cannot be accessed in the PCCharge GUI.

Check_Number String
The check number of the check that will be used when processing the

transaction. Max Length: 10 characters.

CommMethod Enum

Specifies which communication method will be used.
0 – File_Transfer

1 – TCP/IP

Please refer to page 20 for a description of these methods.
If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

CustomerCity String
The customer‘s city. Note: Used only for processor TECK. Cannot be

accessed in the PCCharge GUI.

CustomerName String
The first and last name of the customer. Note: Used only for processor
TECK. Cannot be accessed in the PCCharge GUI.

PCCharge Version 5.9.0
Updated 2/8/2010

 287

Property Name Data Type Description - Check Class Properties

CheckReaderCode Enum

Passes the type of Check Reader that is being used. Currently only used by

Telecheck and will only be set if TECK is the set processor. Cannot be
configured in the PCCharge GUI. Valid Values:

 1 - Magtek_mini_micr

2 - EnCheck_3000

3 - IVI_2500
4 - IVI_430

5 - IVI_431

6 - ICE_5700
7 - MagtekImager

8 - VeriFone_CR1000i

9 - Epson_TMH6000
10 - Epson_TMH6000Imager

11 - WelchAllyn_ScanTeam 8300

12 - VeriFone_CR600

13 - Magtek_Imager_with_Modem
14 - IBM_4610_reader_printer

15 - Ingenico_EC2600

16 - RDM_EC5000
17 - RDM_EC6000

18 - NCR_7158_and_7167

 19 - LS_100
 20 - Magtek_Excella

 21 - Magtek_Excella_DLCapture_FBChkImg

 22 - Verifone_Model_Quartet

CustomerStreet String
The street address of the customer. Note: Used only for processor TECK.
Cannot be accessed in the PCCharge GUI.

Drivers_License String

The driver‘s license number of the individual writing the check. Max Length:

20 characters. The driver‘s license is required for DL (Driver‘s License)

transactions and when performing Double ID transactions.

DLTrackII String
The parsed TrackII data from the driver‘s license. Note: Used only for
processor TECK. Cannot be accessed in the PCCharge GUI.

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.
Note: See SSL Information on page 70 for more information.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where

PCCharge is running. Defaults to 127.0.0.1

ManagerNum String
Used for BPS Double ID transactions. Optional Manager Number for manager
override.

Manual String
Flag that indicates whether the transaction was manually entered or swiped.

Valid values: 0 = manual transaction, 1 = swiped transaction

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Check Services Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MICR_DATA String
The raw MICR data from the bottom of the check. Used for conversion

transactions.

MICRStatus String

Valid Values: 15 = Valid read by MICR reader, 15I = Valid read by MICR reader

with imaging capability, 9 = Manual only Note: Used only for processor
TECK. Cannot be accessed in the PCCharge GUI.

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that
PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page

67). This Flag has no effect if processing will occur over IP or leased line.

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction
response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing

transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 288

Property Name Data Type Description - Check Class Properties

Path String

For use with File Transfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing

the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Phone_Number String

The phone number of the individual writing the check. Max Length: 7 digits.

Format: digits only. The phone number is required for COD (Checks On
Delivery).

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

Processor String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a
valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

Services ServicesType

The type of check verification to be performed. This property may be

specified by using a numerical value or an enumerated value if the
programming language being used supports enumerated values.

Valid values:

0 (MICR) – MICR

1 (COD) – Checks-On-Delivery

2 (DL) – Driver‘s License

3 (DI) – Double ID

4 (SPS) – Use if Check processor is SPS

Note: The value set in the Services property overrides the value set in the

Action property.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This
value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

State String
The state code of the state that issued the check writer‘s driver‘s license.

The state code is required for DL (Driver‘s License). Format: 2 characters.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,
lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

class. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly
could cause reconciliation issues and problems such as double-charging a

customer‘s account.

Transit_Number String

The Transit Routing Number / ABA number that will be used when processing

the transaction. This value indicates which bank issued the check. Max

Length: 9 characters. This value is required for MICR transactions and when

performing Double ID transactions.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

PCCharge Version 5.9.0
Updated 2/8/2010

 289

Property Name Data Type Description - Check Class Properties

XMLtrans Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtrans property. See the

description for the Send method for more information.

Zip_Code String

The check writer‘s ZIP code. Max Length: 9 characters. Format: digits only.

This value is required for COD transactions. Note: If submitting the 9-digit

zip, do not include the dash.

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

Note: To perform Double ID, both the MICR_DATA and Drivers_License fields must be populated.

 These properties are required, regardless of service type.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

 COD -- required for Checks-On-Delivery

 DL -- required for Driver‘s License

 MICR -- required for MICR

Check Class Methods

Method Name
Returned

Value
Description - Check Class Methods

Clear None

The Clear method will clear the values in all properties and methods. It is

recommended that this method be called:
d. after the transaction results have been retrieved by using the

various .get methods

e. after the DeleteUserFiles method has been called

f. prior to running the next transaction

DeleteUserFiles None

For use with File Transfer CommMethod only. The DeleteUserFiles
method attempts to delete all request and response files associated with the

transaction. It will delete the files based on the value set in the User

property. The DeleteUserFiles method should be called after the results
have been retrieved from the transaction. If an error occurs while

attempting to delete the files the GetErrorDesc method will give a brief
description of the error. Consult the section System Error Codes and

Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetApproved Boolean

The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned. An

―APPROVED‖ response indicates that a Verification has been approved.

GetAuth String

For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was

rejected.

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a conversion transaction that

will result in a monetary transfer is approved or declined. A ―CAPTURED‖
response indicates that the transaction has been approved, and that the

transaction has been placed in the open batch.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

PCCharge Version 5.9.0
Updated 2/8/2010

 290

Method Name
Returned

Value
Description - Check Class Methods

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be
returned (see page 148).

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetResultCode String
Returns the result code that is provided by the processor. This value is not
returned by all processing companies.

GetReturnCheckFee String
Returns the response from the processor which indicates the fee for returned

checks. Note: Only used for the processor TECK

GetReturnCheckNote String
Returns the response from the processor which displays a note for returned

checks. Note: Only used for the processor TECK

GetReference String
Returns the reference number that is provided by the processor. This value is

not returned by all processing companies.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

GetTraceID String Only for TECK. Returns the Trace ID associated with the transaction.

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file
contains XML string data. The text that is retrieved can be used by

integrators that wish to parse the results of the transaction themselves or for
troubleshooting purposes. Refer to the section File Method (see page 478)

for a description of the tags and values that are returned. Note: This

method must be called prior to calling the DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file

associated with the transaction. The request (.inx) file contains XML string

data. The text that is sent in the .inx file can be used to view the message
of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

For use with File Transfer CommMethod only. The PccSysExists method
is used to determine if PCCharge is available to process transactions. If

PccSysExists returns TRUE, the file SYS.PCC exists in the PCCharge

directory and PCCharge is not available to process transactions. TRUE

usually indicates that PCCharge is either not running, is performing a batch

or database function, or is in an error state. The GetErrorCode and

GetErrorDesc methods will provide information as to why the file exists.
Consult the section System Error Codes and Descriptions for a list of valid

error codes that will be returned (see page 148). If PccSysExists returns

FALSE, then PCCharge is ready to process transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 291

Method Name
Returned

Value
Description - Check Class Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the
programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values: (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only—do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the

store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 292

EBT

Because Debit and EBT transaction are similar, the Debit Class should be used to perform EBT
transactions. Consult the section Debit Class for more information (See page 278)

PCCharge Version 5.9.0
Updated 2/8/2010

 293

Gift Class

The Gift class provides integrators with properties and methods used to submit gift card transactions

to PCCharge. To use the Gift class to integrate transaction processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the

Gift Class properties table are the minimum required to process a Gift Card Redemption / Sale
transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is

passed as a parameter to activate the XML message format)

4. Wait for the transaction to process and then call the various .Get methods to determine the

outcome of the transaction (code using the .Get methods may be placed immediately after the

Send method). The most important information can be acquired by calling the GetResult and

GetAuth methods. If an error occurs, call the GetErrorCode and GetErrorDesc methods to
determine the nature of the error.

5. Call the DeleteUserFiles method to delete all files related to the transaction.

6. Call the Clear method to reset all the properties and methods related to the transaction or

destroy the object.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

VeriFone Stored Value API (GAPI)

The VeriFone Stored Value API (GAPI) is a proprietary specification that allows for stored value card
processors to add themselves to PCCharge. Applications using GAPI can also integrate with PCCharge
using the various integration methods. For more information on adding a stored value card processor
to PCCharge, and how to obtain the VeriFone Stored Value API, please contact VeriFone sales at 1-800-
725-9264.

PCCharge Version 5.9.0
Updated 2/8/2010

 294

Gift Class Properties

Property Name Data Type Description – Gift Class Properties

Action String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.
Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with
leading zeroes.

Example: Incorrect format ―0001.00‖.

For Valuelink (VLNK) Balance Adjustment: Format: +/-DDDDD.CC.

Authcode String

The auth code property that will be used for processing Voids for VTEC,

VLNK, MELL, and GSAR. For VTEC and VLNK, set this property to the auth

code of the original transaction to be voided. For GSAR and MELL, set this
property to the reference number of the original transaction to be voided.

For BPS, set to retrieval reference number of original transaction (the one to

be voided).

Card String
The gift card number that will be used when processing the transaction. Max
Length: 20 characters.

CardSeqNum String

The card sequence number for the transaction. Currently, GSAR is the only

processor that uses this property. If sending multiple transactions to GSAR,

this should be the sequence number of the transaction. For example, if ten

cards are being issued and this is the fifth in the sequence, set CardSeqNum

to 5. CardSeqNum should be no more than two characters long.

CashierID String
The numeric cashier ID for the gift card transaction. The only gift card

processors that currently support the CashierID are VTEC and VLNK.

CheckCard Boolean

Flag that indicates whether to activate gift card validity testing. Valid

Values: TRUE; FALSE. Default value: TRUE. This value must be set to

FALSE when performing Follow on transactions because the card number is

omitted from these transaction requests.

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP

Please refer to page 20 for a description of these methods.
If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

Demo Boolean

The demo mode flag. In demo mode, a simulated response is returned in
which even amounts return approved, and odd amounts return declined.

Valid Values:

TRUE – Activates demo mode

FALSE – Deactivates demo mode (default)

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.
Note: See SSL Information on page 70 for more information.

ExpDate String

The expiration date associated with the gift card that will be processed. Must

be exactly four characters long. Format: MMYY Example: 1208 Note: Most
gift cards do not have an expiration date.

Force Boolean
The Force flag. The Force flag indicates whether or not an approval code

has already been issued. The Force flag is used only by GSAR Redemption or

a single GSAR Issuance/Add Value transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 295

Property Name Data Type Description – Gift Class Properties

GiftPin String
Only used for the processor SVS. To retrieve pin, call GetGfitPin upon

activation. Used for only for virtual gift card transactions.

GratuityAmount String
The gratuity amount for the transaction. Tip should be no more than 9

characters long (including the decimal). Format: DDDDDD.CC.

Industry String
The industry type for the transaction. Valid Values: 1 = retail, 2 =

restaurant. For VLNK: 0 = retail, 1 = restaurant, 2 = e-Commerce.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where

PCCharge is running. Defaults to 127.0.0.1

LastValidDate String

The last year that will be considered a valid expiration date. Currently, the
default value in the class is ―09‖. It is recommended that a setting is

provided by which the end-user can change this property; otherwise, in the

future, end users will require a new class to be distributed to resolve

expiration date issues. Length: 2 digits. Format: YY Example: If

LastValidDate is set to 05, then cards between 06 and 99 are considered
to be 1906 to 1999, and cards between 00 and 05 are 2000 to 2005.

Loyalty Boolean

The Loyalty flag indicates whether or not the transaction is a loyalty

transaction. Currently, only VTEC supports the Loyalty flag. The default

value of the Loyalty flag is false.

Manual Long

Flag that indicates whether the transaction was manually entered or swiped.

If the transaction was swiped, the Track property must also be set. Valid

values: 0 = manual transaction, 1 = swiped transaction

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Gift Card Setup window of PCCharge. Max

Length: 32 characters. This value can be alphanumeric.

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that
PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
58). This Flag has no effect if processing will occur over IP or leased line.

OldCard String

The old card property. OldCard should be no more than twenty characters

long. For VTEC: OldCard will be used for the Replace transaction. For

VLNK: OldCard will be used for the Balance Merge and Balance Transfer

transactions.

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction

response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be

caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing

transactions.

Partial Boolean
For GSAR: Flag indicating whether the transaction is a partial redemption

transaction.

Path String

For use with File Transfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing

the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a ―\‖.

Points String
The number of points that will be redeemed in a Loyalty Points transaction.

Points should be no more than nine characters long.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

PCCharge Version 5.9.0
Updated 2/8/2010

 296

Property Name Data Type Description – Gift Class Properties

Processor String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

PromoCode String
Used for GVEX: A code defined by the merchant that affects the calculation
from amount and units to points.

Refund String

Flag that indicates whether to provide the customer a refund when

performing a VTEC Deactivate transaction. Valid Values:

1 – Provide refund

0 – Do not provide refund

RFID String

Set to 1 if card information was read from RFID (Radio Frequency

Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

Ticket String

The ticket or invoice number for internal referencing by merchant. This
value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all gift processors support ticket numbers.

TimeOut Long

The number of seconds after which a timeout error will be returned from the

class. The count will start when the Send method is called. The default

timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59). Setting the TimeOut value improperly

could cause reconciliation issues and problems such as double-charging a
customer‘s account.

TIP String

The tip amount for the transaction. TIP should be no more than 9 characters

long (including the decimal). Format: DDDDDD.CC. Currently, tips are

supported via the TIP property only for VTEC and VLNK restaurant
transactions.

TotalCardNum String

The total number of cards that will be sent to PCCharge. GSAR is currently

the only processor that uses this property. If sending multiple transactions to

PCCharge, this should be the total number of the transactions that will be

sent. Example: If ten cards are being issued, set TotalCardNum to 10.

TotalCardNum should be no more than two characters long.

Track String

The track II data captured from the magnetic strip of the card.. Max

Length: 40 characters.
Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

Alternatively, the GetParseData method can be used to parse the track

data and set the Card, ExpDate, and Track properties automatically.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will
be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important
information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page
62).

VirtualGiftCardFlag Boolean
Only used for the processor SVS. 0 - False, 1 - True – Only sent on an

activation to determine if a pin should be returned.

XMLtran Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtran property. See the description

for the Send method for more information.

TableNumber String
Only used for GAPI in restaurant mode. This is the table number of the gift

card holder

TrackI String Only used for GAPI. The Track I information associated with the card

CashierName String Submit Cashier‘s login name.

PCCharge Version 5.9.0
Updated 2/8/2010

 297

Property Name Data Type Description – Gift Class Properties

CashierPassword String Submit Cashier‘s password.

SkuLoyalty String

GIVEX ONLY – Integration Only

Pass this tag in order to send product codes, quantities and amounts for
loyalty transactions.

Format:

Single Product Code:
<SKU_LOYALTY>Product Code,Amount,Quantity</SKU_LOYALTY>

Multi-Product Codes (Separated with a semi-colon):

<SKU_LOYALTY>Product Code,Amount,Quantity; Product

Code,Amount,Quantity</SKU_LOYALTY>

 These properties are required to process a gift card redemption or sale transaction.

 Required for VTEC gift card transactions

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they
should be implemented.

GiftCard Class Methods

Method Name
Returned

Value
Description - GiftCard Class Methods

Abort Boolean

The Abort method attempts to cancel the transaction in progress and will
return a Boolean value that indicates whether or not the transaction was

canceled. Note: This method is not available when integrating using FoxPro.

Use the Cancel method instead.

Cancel None
The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is

recommended that this method be called:
g. after the transaction results have been retrieved by using the

various .get methods

h. after the DeleteUserFiles method has been called

i. prior to running the next transaction

DeleteUserFiles None

For use with File Transfer CommMethod only. The DeleteUserFiles

method attempts to delete all request and response files associated with the

transaction. It will delete the files based on the value set in the User

property. The DeleteUserFiles method should be called after the results
have been retrieved from the transaction. If an error occurs while

attempting to delete the files the GetErrorDesc method will give a brief
description of the error. Consult the section System Error Codes and

Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetActivationCount String Returns the number of activations in the current batch

GetActivationTotalAmount String Returns the total dollar amount of activations in the current batch

GetAddPointsCount String Returns the number of AddPoints Transactions in the current batch

GetAddPointsTotalAmount String Returns the total dollar amount of AddPoints transactions in the current

batch

GetAddValueCount String Returns the number of AddValue transactions in the current batch

GetAddValueTotalAmount String
Returns the total dollar amount of AddValue transactions in the current

batch

GetAmountDue String Used in partial redemption transactions where only part of the amount was

authorized. Returns the remainder amount that is owed to the merchant.

PCCharge Version 5.9.0
Updated 2/8/2010

 298

Method Name
Returned

Value
Description - GiftCard Class Methods

GetAuth String

The GetAuth method returns the authorization number for approved
transactions or the reason the transaction was declined (if the processor

provides one). For GVEX Balance transaction: GetAuth will return the

balance remaining on an account. For all other GVEX transactions: GetAuth

will return the transaction‘s reference/error message. For VTEC, returns the
Auth Code. For a VTEC Batch function: use this method to retrieve the

number of sales done that day and the total amounts of sales in the following

format <# of transaction>, <amount>.

GetAuthAmount String
Used in partial redemption transactions where only part of the amount was
authorized. Returns the actual authorized amount.

GetBalanceTransferCount String Returns the number of Balance Transfers in the current batch

GetBalanceTransferTotalAmou

nt
String Returns the total dollar amount of Balance Transfers in the current batch

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result

in a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been

approved.

GetCashBack String

Used in redemption for remaining balance transactions where the transaction

amount is so close to the balance of the card that the entire balance is

authorized. Returns the remainder that is owed to the customer.

GetCreditCount String Returns the number of credits in the current batch

GetCreditTotalAmount String Returns the total dollar amount of credits in the current batch

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetExp String
Returns the expiration date for processors who issue expiration dates in the
response.

GetGiftCardBalance String Returns the gift card balance.

GetGiftCardIssuer String

The GetGiftCardIssuer method returns the gift card issuer of the card

that is present in the Card property. Currently, there are no standards for

indicating what type of gift card is present. Therefore, whatever value is in

the Processor property is what will be returned.

GetGiftCardType String

The GetGiftCardType method returns the gift card issuer of the card that

is present in the Card property or the optional card parameter that is passed

to the GetGiftCardType method (the GetGiftCardType is the same as

GetGiftCardIssuer). Currently, there are no standards for indicating
what type of gift card is present. Therefore, whatever value is in the

Processor property is what will be returned.

GetGiftPin String
Only used for the processor SVS. Returned on activation if the virtual gift

card tag is set to ―1‖.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber
property.

GetParseData String

The GetParseData method will parse a string (containing credit card track

data) passed to it and populate the Card, ExpDate, and Track properties

with the appropriate data. GetParseData will return an integer indicating

its success. Valid return values: 0 (error parsing data), 1 (track I successful),

or 2 (track I & II successful).

GetPointsCount String Returns the number of points transactions in the current batch

GetPointsTotalAmount String Returns the total dollar amount of points transactions in the current batch

GetProcRespCode String The processor response code. Only returned by the processor SVS.

PCCharge Version 5.9.0
Updated 2/8/2010

 299

Method Name
Returned

Value
Description - GiftCard Class Methods

GetRefNumber String

The GetRefNumber returns the Reference field from the .oux file. The
Reference field is used for different purposes (depending on the gift card

processor). For GVEX Register transaction: The first eleven digits of an

account number will be returned. For all VTEC transactions: The account‘s

remaining balance will be returned. For a VTEC batch function: use this
method to retrieve the number of activations done that day and the total

amounts of activations in the following format <# of transaction>,

<amount>.>. For a BPS Redemption transaction, returns the retrieval
reference number.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetRet String

For GVEX: Returns the loyalty balance. For VLNK: Returns the trace number.

For a VTEC batch function: : use this method to retrieve the number of Gift
Transactions Voids performed that day. You can call GetVoidBalance to

determine the total amount of the voids.

GetSaleCount String Returns the number of redemptions in the current batch

GetSaleTotalAmount String Returns the total dollar amount of redemptions in the current batch

GetTI String

The GetTicket method returns the Ticket field from the .oux file. The Ticket
field will return the ticket for all transactions except for a VTEC batch

function. For a VTEC batch function: use this method to retrieve the

number of gift card that has been de-activated that day and the total

amounts of de-activations in the following format <# of transaction>,
<amount>.>.

GetTicket String

The GetTicket method returns the Ticket field from the .oux file. The Ticket

field will return the ticket for all transactions except for a VTEC batch

function. For a VTEC batch function: use this method to retrieve the
number of gift card that has been de-activated that day and the total

amounts of de-activations in the following format <# of transaction>,

<amount>.>.

GetTIM String
Returns the Time of the transaction. This value is not returned by all
processing companies. For VTEC, returns the Amount Due.

GetTipCount String Returns the number of Tip transactions in the current batch

GetTipTotalAmount String Returns the total dollar amount of Tip transactions in the current batch

GetTransDateTime String Returns the transaction date and time when passed back by a processor.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

GetVoidBalance String Returns the Void Balance

GetVoidCount String Returns the number of voids in the current batch

GetVoidTotalAmount String Returns the total dollar amount of Voids in the current batch

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file
contains XML string data. The text that is retrieved can be used by

integrators that wish to parse the results of the transaction themselves or for

troubleshooting purposes. Refer to the section File Method (see page 478)
for a description of the tags and values that are returned. Note: This

method must be called prior to calling the DeleteUserFiles method.

PCCharge Version 5.9.0
Updated 2/8/2010

 300

Method Name
Returned

Value
Description - GiftCard Class Methods

GetXMLRequest String

This method is used to echo the text that is sent in the request file
associated with the transaction. The request (.inx) file contains XML string

data. The text that is sent in the .inx file can be used to view the message

of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

For use with File Transfer CommMethod only. The PccSysExists method

is used to determine if PCCharge is available to process transactions. If

PccSysExists returns TRUE, the file SYS.PCC exists in the PCCharge

directory and PCCharge is not available to process transactions. TRUE
usually indicates that PCCharge is either not running, is performing a batch

or database function, or is in an error state. The GetErrorCode and

GetErrorDesc methods will provide information as to why the file exists.
Consult the section System Error Codes and Descriptions for a list of valid

error codes that will be returned (see page 148). If PccSysExists returns

FALSE, then PCCharge is ready to process transactions.

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the

programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values: (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only—do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean

The ValidCardLength method returns true if the card is of the correct

length. Otherwise, ValidCardLength will return false.

ValidCreditCard has an optional string parameter in which a card number

can be passed. If the parameter is blank, it will use the Card property. If
false is returned, check the error code to determine the reason for failure.

Consult the section System Error Codes and Descriptions for a list of valid

error codes and descriptions that will be returned (see page 148).

ValidDate Boolean
The ValidDate method returns TRUE if the expiration date provided in the

ExpDate property is valid, or FALSE if it is not.

ValidIssuer Boolean Returns TRUE for valid card issuer

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.

Consult the section System Error Codes and Descriptions for a list of valid
errors that will be returned (see page 148).

VerifyAmount2 Boolean

The VerifyAmount2 method returns TRUE if the amount provided in the

Amount property is in a valid format (+/-DDDDD.CC). or FALSE if it is not.

If FALSE is returned, check the error code to determine the reason for
failure. Consult the section System Error Codes and Descriptions for a list of

valid error codes and descriptions that will be returned (see page 148). The

difference between VerifyAmount and VerifyAmount2 is that

VerifyAmount2 allows a + or – to be in the first position of the Amount
property. This is needed for Balance Adjustment transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 301

Method Name
Returned

Value
Description - GiftCard Class Methods

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in

the ExpDate property is correct and in the right format, or FALSE if it is

not. VerifyExpDate calls the ValidDate function to validate the

expiration date. If FALSE is returned, check the error code to determine the
reason for failure. Consult the section System Error Codes and Descriptions

for a list of valid errors that will be returned (see page 148).

VerifyGiftCard Boolean

The VerifyGiftCard method verifies that a card is provided and that the

card is the expected length. VerifyGiftCard will return true if these

conditions are met. Otherwise, VerifyGiftCard will return false.

VerifyMerchantNumber Boolean No Longer Supported

VerifyProcessor Boolean No Longer Supported

GetPreAuthCount String
Only for GAPI, this returns the total number of gift card pre-auth transactions

processed that day.

GetPreAuthAmount String
Only for GAPI , this returns the total amount of gift card pre-auth transaction

processed that day.

GetPostAuthCount String
Only for GAPI, this returns the total number of the gift card post-auth

transactions processed that day.

GetPostAuthAmount String
Only for GAPI, this returns the total amount of the post-auth transactions

processed that day.

GetIssuanceCount String Only for GAPI, this returns the total number of gift cards issued that day.

GetIssuanceTotalAmount String Only for GAPI, returns the total amount of the gift cards issued that day.

GetDeactivateCount String Only for GAPI, this returns how many gift cards where deactivated that day.

GetDeactivateTotalAmount String
Only for GAPI, this returns the total amount of gift card deactivations that

day.

GetBalanceAdjustCount String
Only for GAPI, this returns the number of gift cards that were balance

adjusted that day.

GetBalanceAdjustTotalAmount String
Only for GAPI, this returns the total amount of balance adjustment on gift

cards that day.

GetBalanceMergeCount String
Only for GAPI, this returns the total number of the gift cards that were

balance merged that day.

GetBalanceMergeTotalAmount String
Only for GAPI, this returns the total amount of gift card balance merges that
day.

GetReportLostStolenCount String Only for GAPI, returns the total reported stolen or lost gift cards that day.

GetReportLostStolenTotalAmo

unt
String

Only for GAPI, returns the total amount of all stolen or reported lost gift

cards that day.

GetCashoutTotalAmount String
Only for GAPI, returns the total amount of all cashout transactions processed
that day.

GetCashoutCount String
Only for GAPI, returns the total number of the cashout transactions

processed that day.

GetReactivateCount String
Only for GAPI, returns the total number of gift cards that have been
reactivated that day.

GetReactivateTotalAmount String
Only for GAPI, the total amount of all gift cards that have been reactivated

that day.

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the
store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

PCCharge Version 5.9.0
Updated 2/8/2010

 302

Batch Class

Batch Class Properties

Property Name Data Type Description – Batch Class Properties

Action Single
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

BatchCloseType String

Flag that determines what type of batch close will occur. This flag only

supported by FDMS Atlanta and Fifth-Third when using action code 30 or 31

Valid values:

1 – Standard End of Day Batch Close (Default)

2 – Shift Close
3 – Fifth-Third Terminal Based Batch Close of Debit, EBT, or Gift

Cancel Boolean
Set the Cancel property to TRUE to attempt to cancel the settle/close

function. Check the GetResult method to see if the function was
Canceled.

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP
Please refer to page 20 for a description of these methods.

If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

Demo String

The demo mode flag. In demo mode, a simulated response is returned. Valid
Values:

1 – Activates demo mode

0 – Deactivates demo mode (default)

EnableSSL String

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.

Note: See SSL Information on page 70 for more information.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where
PCCharge is running. Defaults to 127.0.0.1

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the various setup windows of PCCharge. Max
Length: 32 characters. This value can be alphanumeric.

OutDelay Single

The delay time before the PCCharge directory is polled for a transaction

response file (.oux file). The default is 0.25 seconds. This value should only

be modified if the integration is not performing properly. This could be
caused if the client machine is slow or there is network lag that causes the

server to spend more time checking for .oux files than processing
transactions.

Path String

For use with File Transfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing
the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a ―\‖.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

Processor String

The code for the processing company that will be used when performing

batch operations. This value can be no more than four characters and must

be capitalized. The processor specified in this property must be set up with
a valid merchant number in PCCharge. A list of valid processor codes are

listed in the Processing Company Codes section (see page 150).

SplitProcessor String
Only used when settling the processor CITI for private label transactions. Set

this property to the main credit card processor ID code being used.

PCCharge Version 5.9.0
Updated 2/8/2010

 303

Property Name Data Type Description – Batch Class Properties

TimeOut Long

The number of seconds after which a timeout error will be returned from the

class. The count will start when the Send method is called. The default
timeout value is 90 seconds. It is highly recommended that integrators review

the section Timeouts (see page 59).

User String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

XMLtrans Boolean

Set to True to activate the XML message format. It is recommended that

the “3” parameter be passed to the Send method to activate the XML

message format instead of using the XMLtrans property. See the

description for the Send method for more information.

Command String

CashierName String Submit Cashier‘s login name.

CashierPassword String Submit Cashier‘s password.

BatchNumber String

Submit batch number that was returned on the AMEX split dial settlement,
needs to be passed when performing the following Action Codes:
35 – Reverse Batch

36 – Resubmit Batch

37 – Get Results

38 – Finalize Batch

The following properties are no longer available in the Batch class and should be ignored:

AmexAmount PurchaseCount

AmexCount Response

Balance ReturnAmount

BatchDate ReturnCount

BatchNumber Store

CIC Terminal

ItemCount VisaMCAmount

MTS VisaMCCount

PurchaseAmount

Batch Class Methods

Method Name
Returned
Value

Description - Batch Class Methods

Clear None

The Clear method will clear the values in all properties and methods. It is
recommended that this method be called:

j. after the transaction results have been retrieved by using the

various .get methods

k. after the DeleteUserFiles method has been called
l. prior to running the next transaction

DeleteUserFiles None

For use with File Transfer CommMethod only. The DeleteUserFiles

method attempts to delete all request and response files associated with the

transaction. It will delete the files based on the value set in the User

property. The DeleteUserFiles method should be called after the results
have been retrieved from the transaction. If an error occurs while

attempting to delete the files the GetErrorDesc method will give a brief
description of the error. Consult the section System Error Codes and

Descriptions for a list of valid error codes and descriptions that will be
returned (see page 148).

PCCharge Version 5.9.0
Updated 2/8/2010

 304

Method Name
Returned

Value
Description - Batch Class Methods

GetAccepted Boolean

The GetAccepted method returns a value of true if the batch was accepted
(for Terminal based processors) or processed (for Host based processors). If

the batch was not accepted or processed, GetAccepted will return a value
of false.

Index is an optional parameter. If multiple batches have been settled, there

will be several entries in the .oux file. GetNumber(Index) will return the

number of merchant accounts that will be in the .oux file.

GetBalance String
The GetBalance method returns the dollar amount of the last settled batch
or the amount waiting to be settled in the open batch.

GetBatches String

The GetBatches method can only be used with Batch Inquiry transactions.
This method returns the number of batches that will be settled for a

particular merchant number. Example: If a merchant account is set up as
TSYS using TCP/IP, there is a limitation on how many transactions can be

sent across on a single batch. Therefore, PCCharge breaks the batch up into

smaller batches. GetBatches returns the number of smaller batches that
would be created for that merchant account.

GetBatchNumber String After a terminal-based batch settles, returns the batch number.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetFileExt String Returns the file extension for the files the batch class will be accessing.

GetItemCount String
The GetItemCount method returns the number of transactions that are in
the batch for which the function was performed.

GetMerchantInfo String

The GetMerchantInfo method returns a string containing all of the
merchant numbers and processors set up in PCCharge. The string will also

indicate whether the processor is Host based (H), Terminal based (T), or a

hybrid (Y). The string will begin with STX and will end with ETX. GS will

separate each record, and FS will separate fields within a record. Example:
<STX>CES <FS>000000927996296767<FS>T<GS>GSAR<FS>

999999999999519<FS>T<GS>VISA<FS>999999999911<FS>T<ETX>

Refer to the section Multi-Merchant Support (see page 68) for more

information on the GetMerchantInfo method.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetNumberIndexs Integer
The GetNumberIndexs method returns the number of merchant numbers
that are stored in PCCharge. This number indicates how many batches will

be settled or closed if an action code of 39 is submitted.

GetProcessor String
Returns the processor ID specified in the Processor property. Only returned
with CITI settlement.

GetProcessed Boolean
The GetProcessed method returns true if the result of the action

performed was ―Processed‖. ―Processed‖ is a response that PCCharge

returns for an inquiry transaction and a Close on a Host based processor.

GetRespCode String

Returns the response code for the batch if the close batch command was
given. The response code indicates whether or not the transaction was

successfully closed. If the batch is declined, the GetResult method will
provide more information indicating why the transaction was not approved.

Valid Values: 2 = Settled, 6 = Declined, or 8 = Deferred.

PCCharge Version 5.9.0
Updated 2/8/2010

 305

Method Name
Returned

Value
Description - Batch Class Methods

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions. The GetAccepted or GetProcessed methods
will indicate whether or not the batch operation was successful. However, if

both GetAccepted and GetProcessed are FALSE, the GetResult method
will provide more information about why the batch operation was not

successful.

GetSettleAmount None No Longer Supported

GetSettleNumber String

The GetSettleNumber method returns the settlement number that is
stored in association with the transaction in PCCharge‘s database. This

number is a sequencing number PCCharge generates internally; the

processing company does not generate it.

GetStatus String

Returns the status of the batch when performing an inquiry or a batch

close/settle operation. If performing a batch close/settlement operation,

GetStatus will return a response from the processor that indicates whether
or not the batch was successfully closed or settled. Example: If TSYS

rejects the batch, GetStatus will return the RB (rejected batch) number

from TSYS . If TSYS accepts the batch, GetStatus will return the batch

number and an ―ACCEPTED‖ response will be returned.

GetSystemInfo None

The GetSystemInfo method is used to set the MerchantNumber and

Processor properties of the Batch class. To use GetSystemInfo, pass

the index number of a merchant number that is registered in PCCharge as a
parameter (for example, the first Merchant number that is set up in

PCCharge is assigned the index of ―1‖). Once the index number has been

passed to PCCharge via GetSystemInfo, the merchant number and

processor can be retrieved using the MerchantNumber and Processor
properties.

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file
contains XML string data. The text that is retrieved can be used by

integrators that wish to parse the results of the transaction themselves or for
troubleshooting purposes. Refer to the section File Method (see page 478)

for a description of the tags and values that are returned. Note: This

method must be called prior to calling the DeleteUserFiles method.

GetXMLRequest String

This method is used to echo the text that is sent in the request file

associated with the transaction. The request (.inx) file contains XML string

data. The text that is sent in the .inx file can be used to view the message
of any transaction sent to the server. Note: This method must be called

after the calling send and before DeleteUserFiles method.

PccSysExists Boolean

For use with File Transfer CommMethod only. The PccSysExists method
is used to determine if PCCharge is available to process transactions. If

PccSysExists returns TRUE, the file SYS.PCC exists in the PCCharge

directory and PCCharge is not available to process transactions. TRUE
usually indicates that PCCharge is either not running, is performing a batch

or database function, or is in an error state. The GetErrorCode and

GetErrorDesc methods will provide information as to why the file exists.

Consult the section System Error Codes and Descriptions for a list of valid

error codes that will be returned (see page 148). If PccSysExists returns

FALSE, then PCCharge is ready to process transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 306

Method Name
Returned

Value
Description - Batch Class Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has an optional parameter that indicates what message
format will be used for the request and response files. This parameter may

be specified by using a numerical value (or an enumerated value if the
programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal

use only-- do not attempt to use any values other than the ones listed above.

SetSSLCertificate None

User can set the local certificate to authenticate the SSL TCP/IP request.

Note: This routine has four parameters.

CertificateName : this will store the Store name of the

store

CertificateLocation : this will assign the store location

CertificateIssuesby : This will assign Certificate issued by

CertificateSerialNumber : This will assign certificate serial number

Note: See SSL Information on page 70 for more information.

GetRecordCount String The number of records matching the inquiry

GetTerminationStatus String

Retrieves Termination Status which returns a ―6‖ upon successful settlement.

If anything other than a ―6‖ is returned there may be an issue with the
settlement file and should be investigated. This applies to : GSAR, Elavon

(NOVA), and NBS

Response:
6 = Batch Settled and file has been deleted.

8 = Batch Settled, but the file is locked and cannot be deleted.

Note: In the event there are multiple batches waiting to be settled in one settlement, the integrated
application will need to be designed to loop through the settlement response to retrieve the response
for each batch.

PCCharge Version 5.9.0
Updated 2/8/2010

 307

Offline Class

Offline Class Properties

Property Name Data Type Description - Offline Class Properties

GetInProcessRecord Long
Returns the index of the record in the .bch file that is currently being

processed. This property will be updated during the ProcessFile function

to reflect the stage of the process.

GetVoid Boolean

Returns true if the transaction requested is marked as void. GetVoid will

take an integer and a string as arguments. The integer is the Index of the

record to be checked, and the string is the name of the .bch file. If an error

is encountered, GetVoid will set the error code and description and exit the

function.

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the
Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MerchantNumber will be used to process the transactions when the .bch

file is processed.

Path String
The path of the directory in which the .bch file resides. Example:

C:\Program Files\PCCW\MyBatchFiles.

PccwPath String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other
methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Processor String

The code for the processing company that will be used to process the
transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150). Processor will

also be used to determine the index that will be used for processing the

.bch file.

User String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

Void Boolean

Sets the flag that indicates whether or not that transaction should be marked

as voided. Usage: Load the transaction. Set the Void property to true. Use

the UpdateRecord method to save the data.

Offline Class Methods

Method Name
Returned

Value
Description - Offline Class Properties

Compact Boolean

The Compact method takes all transactions marked as voided out of the

.bch file. If no .bch file is passed in when Compact is called, it will use a

file name that consists of the processor and index. Example: Visa1.bch. If

an error is encountered during processing, Compact will set the error code
and description and will exit the function.

PCCharge Version 5.9.0
Updated 2/8/2010

 308

Method Name
Returned

Value
Description - Offline Class Properties

Connect Boolean

The Connect method sets an internal class to the object that is passed in to

the Connect method. During the processing of the ProcessFile method,

the object will call the OnUpdate function of that object and pass to that

method an integer that identifies the record that is being processed.

Connect will return true if it successfully sets the class to the object

passed. Otherwise, Connect will be return false.

Disconnect Boolean
The Disconnect method sets the internal class to Nothing. The internal

class is the same class that is modified when Connect is called.

EraseFile Boolean

The EraseFile method sends the .bch file to the Recycle Bin. If no .bch

file is passed in when EraseFile is called, it will use a file name that

consists of the processor and index. Example: Visa1.bch. If EraseFile
encounters an error during processing, the error code and description will be

set and will exit the function.

GetAmount String
The GetAmount method returns the amount of the transaction in the current

record. The GetRecord method must be called first.

GetAppCode String
The GetAppCode method returns the approval code of the transaction in the

current record. The GetRecord method must be called first.

GetBalance Currency
The GetBalance method returns the total balance of the current batch file.

This balance will be set after calling GetTotals or ProcessFile.

GetBchFile String
The GetBchFile method returns a file name if one is not provided. The file

name will consist of the processor code and index. Example: Visa1.bch.

GetCard String
The GetCard method returns the card of the transaction in the current

record. The GetRecord method must be called first.

GetCount Long

The GetCount method returns the number of transactions that are stored in

the .bch file. This variable will be updated after the Compact, GetTotals,

and ProcessFile.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during use of various methods. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetExpDate String
The GetExpDate method returns the expiration date of the transaction in

the current record. The GetRecord method must be called first.

GetIndex Long

The GetIndex method returns the index of the process and merchant

number combinations in the file tid.pcc. The MerchantNumber and

Processor properties will be used to determine the index.

GetItem String
The GetItem method returns the item or record number of the transaction

in the current file. The GetRecord method must be called first.

GetRecord Boolean
The GetRecord method updates the current transaction data with the data

at the index that is provided when calling GetRecord.

GetRecords Long

The GetRecords method returns the number of records that are in a

particular .bch file. This data will be updated after calling the GetVoid,

GetTotals, and ProcessFile method.

GetTicket String
The GetTicket method returns the ticket number of the transaction in the

current record. The GetRecord method must be called first.

GetTotals Boolean

The GetTotals method updates the balance, counts the transactions in the

.bch file, and puts them in local variables. These figures can be retrieved

with the GetCount and GetBalance.

GetTransType String
The GetTransType method returns a string representation of the type of
transaction in the current record. Example: Sale, Void, Credit, etc. The

GetRecord method must be called first.

PCCharge Version 5.9.0
Updated 2/8/2010

 309

Method Name
Returned

Value
Description - Offline Class Properties

ProcessFile Boolean

The ProcessFile method accesses the .bch file provided (or calls

GetBCHFile if not provided), and processes the transactions in the file. If

an error occurs while processing the file, ProcessFile will update the error

code and description and processing will be terminated.

UpdateRecord Boolean

The UpdateRecord method accesses the .bch file provided (or calls

GetBCHFile if not provided), and marks the records provided as voided if

the Void flag is set to true. If an error occurs while processing the file,

UpdateRecord will update the error code and description and processing

will be terminated.

Reporting

The Charge class may be used by integrators to submit report requests. A report request can have
PCCharge print a report to it‘s default report printer or have PCCharge generate a file containing the
report output. If generating a file, the PCCharge reporting interface supports three different file
types:

1. Portable Document Format (.pdf)
2. Rich Text Files (.rtf)
3. Standard Text files (.txt)

Note: The reporting interface cannot be configured to send reports directly to the screen.

The following outlines the properties used for submitting report requests to PCCharge with the
Charge class. The properties in the Charge class that are not documented below should be left

blank when submitting report requests.

Property Data Type Description – Charge Class Reporting Properties

Action Long

The action code that identifies what type of report will be requested. Valid

Values: 81-84. Example: If running a credit card detail report, set the action

code to ―81‖. Consult the section DevKit Constants for a list of valid values
(see page 141).

Card String

User name filter. If a valid user name is set in the Card property, the
report will be filtered by that user name. The report returned will consist of

only those transactions processed by the user name specified. Example:

"User1". If this property is left blank, the report will show transactions
processed by all users.

CheckCard Boolean

Flag that indicates whether to activate credit card validity testing. Valid

Values: TRUE; FALSE. Default value: TRUE. This value must be set to

FALSE when submitting a report request.

CommMethod Enum

Specifies which communication method will be used.

0 – File_Transfer

1 – TCP/IP
Please refer to page 20 for a description of these methods.

If TCP/IP is selected, the IPAddress, Port and EnableSSL properties must also

be set. If File_Transfer is set then the Path property must be set.

EnableSSL Boolean

For use with TCP/IP CommMethod only. SSL is available starting with

PCCharge version 5.8. Set to True to enable SSL Socket integration.

Note: See SSL Information on page 70 for more information.

IPAddress String
For use with TCP/IP CommMethod only. IPAddress of machine where
PCCharge is running. Defaults to 127.0.0.1

Manual Long

Result filter. Use this filter to create a report consisting of only those

transactions with the result specified.

Valid Values: 0 = all (default), 1 = approved, 2 = declined Example: 1

PCCharge Version 5.9.0
Updated 2/8/2010

 310

Property Data Type Description – Charge Class Reporting Properties

Member String

Ending Date/Time filter. Specifies the end date and end time of the report.

Format: Date: MM/DD/YY Time: HH:MM:SS PM. When used in conjunction

with Street; will create a report consisting of only those transactions

processed between the start and end date/time specified (inclusive). If an
end date is not specified, today‘s date is assumed. If an end time is not

specified, 11:59:59 PM is assumed. The end date can be passed without the

end time. However, the end time cannot be passed without the end date.

Examples: “07/06/05 06:00:00 PM” or ―07/06/05‖

MerchantNumber String

Merchant Number filter. Set this property to filter the report by the

merchant number specified. Setting this property will generate a report
consisting of only those transactions processed via the merchant number

specified. To generate a report that includes all merchant numbers in

PCCharge, set this property to “ALL― or leave blank. Example:
“99999999911”

Path String

For use with File Transfer CommMethod only. The path to the directory in

which the PCCharge executable resides. This property must be set prior to

calling the Send, PccSysExists, and other methods that require accessing

the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\ (default)

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a ―\‖.

PeriodicPayment String

Report Output setting. Determines if the report will be printed by PCCharge

or written to a file. Valid Values: ―0‖ = print to default printer specified in

PCCharge (default). ―1‖ = print to file using filename specified in TransID

and path specified in TRACK.

Port String For use with TCP/IP CommMethod only. Open port of PCCharge.

Street String

Starting Date/Time Filter (Optional) Specifies the start date and start time

of the report. Format: Date: MM/DD/YY Time: HH:MM:SS PM. Use to create

a report consisting of only those transactions processed on or after the date
specified. If a start date is not specified, today's date is assumed. If a start

time is not specified, 12:00:00 AM is assumed. The start date can be passed

without the start time. However, the start time cannot be passed without
the start date.

Examples: "03/04/05 09:00:00 AM" or ―03/04/05‖

TimeOut Long

The number of seconds after which a timeout error will be returned from the

class. The count will start when the Send method is called. The default

timeout value is 90 seconds. It is highly recommended that integrators review
the section Timeouts (see page 59).

Track String

Destination Directory for Report File. Specifies the destination directory

where the report file will be generated by PCCharge (if PeriodicPayment

is set to "1").

Example: ―C:\My Documents\PCCReports\‖

Path Formats: UNC, MS-DOS(8 Characters) and Long. Max Length: 40
characters (if the Destination Directory is longer than 40 characters, use

CustCode for the additional characters. Must end with a "\" unless the

directory name will be continued in the CustCode property.

Note: If running in a Client/Server environment, this property is the path

from the server running PCCharge, not the client. For example, if a client

submitted a report request that specified ―C:\― as the destination directory,
the report would be written to the local hard drive of the server running

PCCharge, not to the client‘s hard drive.

CustCode String

Destination Directory for Report File (continued). Continuation of the
destination directory (if the directory name is greater than 40 characters).

Max Length: 25 characters. Must end with a "\"

PCCharge Version 5.9.0
Updated 2/8/2010

 311

Property Data Type Description – Charge Class Reporting Properties

TRANSID String

Report File name/Report File Type. Specifies the filename and extension of

the report file generated by PCCharge (if PeriodicPayment is set to "1").
Also determines what file type will be used when PCCharge generates the

report. To specify the file type, set the extension to one of the following:

.pdf – Create the report file in the Portable Document Format. Ex.

Report.pdf

.rtf – Create the report file in Rich Text. Ex. Report.rtf

.txt – Create a report file in flat text. Ex. Report.txt Default: .txt (If an

extension other than the ones listed is passed, the report will be returned as

flat text and a .txt extension will be added to the filename)

User String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

 These properties are required to submit a report request.

The following outlines the methods used to process report requests. The methods in the Charge

class that are not documented below will not be used when processing report requests.

Method
Returned

Value
Description - Charge Class Reporting Methods

Cancel None

The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

Clear None

The Clear method will clear the values in all properties and methods. It is
recommended that this method be called:

a. after the transaction results have been retrieved by using the

various .get methods

b. after the DeleteUserFiles method has been called
c. prior to running the next transaction

DeleteUserFiles None

For use with File Transfer CommMethod only. The DeleteUserFiles
method attempts to delete all request and response files associated with the

transaction. It will delete the files based on the value set in the User

property. The DeleteUserFiles method should be called after the results

have been retrieved from the transaction. If an error occurs while attempting

to delete the files the GetErrorDesc method will give a brief description of

the error. Consult the section System Error Codes and Descriptions for a list
of valid error codes and descriptions that will be returned (see page 148).

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was
rejected.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

PCCharge Version 5.9.0
Updated 2/8/2010

 312

Method
Returned

Value
Description - Charge Class Reporting Methods

PccSysExists Boolean

For use with File Transfer CommMethod only. The PccSysExists method
is used to determine if PCCharge is available to process transactions. If

PccSysExists returns TRUE, the file SYS.PCC exists in the PCCharge

directory and PCCharge is not available to process transactions. TRUE usually
indicates that PCCharge is either not running, is performing a batch or

database function, or is in an error state. The GetErrorCode and

GetErrorDesc methods will provide information as to why the file exists.

Consult the section System Error Codes and Descriptions for a list of valid

error codes that will be returned (see page 148). If PccSysExists returns

FALSE, then PCCharge is ready to process transactions.

Send Integer

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the

action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and description,

raise the Error event, and terminate processing. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

The Send method has an optional parameter that indicates what message

format will be used for the request and response files. This parameter may
be specified by using a numerical value (or an enumerated value if the

programming language being used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send 3
Note: The other values that appear in the enumerated list are for internal use

only-- do not attempt to use any values other than the ones listed above.

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.

Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property

must be set before calling this Method.

PCCharge Version 5.9.0
Updated 2/8/2010

 313

OLE/COM Method

Several exposed OLE classes in PCCharge allow integrators to perform various processing functions.
Before these classes can be used, a reference will need to be made to the PCCharge executable. For
example, in Microsoft Visual Basic 6, follow the procedure below.

1. Choose Project | References from the Visual Basic menu bar.

2. After the References window opens, from the list, scroll to and check the box next to either:

 PCCharge Pro (to reference PCCharge Pro)

 Active-Charge Payment Server (to reference PCCharge Payment Server)

and click OK. (The DevKit installation attempts to install both PCCharge Pro and PCCharge
Payment Server by default. If the programs have not yet been installed on the system, install them
from the DevKit CD and refer to the section Getting Started (see page 24) to set up both products.)

PCCharge Pro and PCCharge Payment Server provide the developer with several OLE classes to allow
the integration of payment processing:

 PccCharge (for Credit card integration)

 PCCDebit (for Debit card integration)

 PccCheck (for Check integration)

 PCCEBT (for EBT card integration)

 PCCGiftCard (for Gift/Loyalty integration)

 PccBatch & PccSettle (for Batch/Settlement integration)

 PccPinPad (for PINpad integration)

 PccBin (for utilities used to determine Commercial Card information)

The properties and methods of the various classes can be viewed through the object browser. If MS VB6
is not being used, refer to the language documentation for instructions on adding OLE references.

Note: The additional classes that are exposed that do not appear in the list above do not provide
transaction processing functionality. These classes provide various utilities or provide setup
functionality. See the sections Utility Related Classes (see page 375) and Setup Related Classes (see
page 379) for more information on these additional classes.

Note: The OLE method of integration was primarily designed to be used for integrations in which the
PCCharge engine and the integrated application both reside on the same machine.

WARNING: If integrating via OLE, the integrated application must use the same version of PCCharge as
the version of the PCCharge DevKit used to create the integration.

PCCharge Version 5.9.0
Updated 2/8/2010

 314

Using the OLE classes to integrate synchronously

To program in a synchronous manner, create an instance of any of the OLE classes by using the
following line of code:

Set <instance name> = New <object name>

For example, to create an instance based on the PccCharge class, the following line of code would be
used in MS VB6:

Set Charge = New ActiveCharge.PccCharge

Using the OLE classes to integrate asynchronously

To program in an asynchronous manner using the OLE classes, the object definition for the OLE class

must indicate to use events. Also, a parameter must be passed with the Send method that indicates

asynchronous communication.

To define an object that indicates to use events based on the PccCharge class, the following line of

code would be used in MS VB6:

Dim WithEvents Charge As ActiveCharge.PccCharge

To create an instance based on the PccCharge class, the following line of code would be used in MS

VB6:

Set Charge = New ActiveCharge.PccCharge

To pass the parameter that indicates asynchronous communication to the Send method, use the

following format:

.Send [TRUE (for asynchronous) or FALSE (for synchronous)], 3 (XML message format)]

For example, the following line of code would indicate asynchronous communication using the XML
message format:

.Send True, 3

PCCharge Version 5.9.0
Updated 2/8/2010

 315

PccCharge Class

The PccCharge class provides integrators with properties and methods used to submit credit card

transactions to PCCharge. To use the PccCharge class to integrate transaction processing, follow the

procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the

PccCharge Properties table are the minimum required to process a Sale or Pre-Authorization
transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

4. If programming asynchronously, wait for the Error or Finish event to occur.

5. If programming synchronously, code using the .Get methods may be placed immediately after the

Send method

6. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

7. Call the DeleteUserFiles method to delete all files related to the transaction.

8. Call the Clear method to reset all the properties and methods related to the transaction or

destroy the object.

Consult the Pseudo-code section (see page 156) for various examples that may be followed when using

the Charge.OCX to perform transaction processing.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 316

PccCharge Properties

Property Name Data Type Description - PccCharge Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not use
commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

AmxChargeDescription String

The American Express Charge Description. This is a general description

describing merchandise: the AMEX representative and the merchant will

decide on an appropriate description. Note: Only Required for Retail, MOTO

and Restaurant transactions when using AMEX direct settlement or TSYS Max
Length: 23 bytes

AmxDescription_1 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max
Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AmxDescription_2 String

American Express Description data. Additional description or information
about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes
This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AmxDescription_3 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:
Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes

This field is optional and should only be provided if the transaction will be
settled directly with Amex or TSYS

AmxDescription_4 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max
Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AuthCode String

The Authorization code. This value is returned by the issuing bank and should
only be set in a transaction request if processing a Post-Authorization and the

Post-Authorization is being used to add a Voice-Authorization to the batch or

to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The AuthCode property does not need to be set
if the Post-Authorization completes a standard Pre-Authorization using the

TroutD value of the Pre-Authorization. See the section Follow On
Transactions for more information (see page 70).

BDate String

The Business / Batch Date. If populated, this value will be placed in the

Business Date column of the transaction record in the PCCharge database

(pccw.mdb). Format: MMDDYY

PCCharge Version 5.9.0
Updated 2/8/2010

 317

Property Name Data Type Description - PccCharge Properties

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the

transaction is being ran for payment of a bill (ultilty, monthly gym dues, etc.)
Valid values:

0 – Non-Bill payment transaction

1 – Bill payment transaction

Card String

The credit card number that will be used when processing the transaction.
Max Length: 20 characters. Example: 5424180279791765

NOTE: Is it the integrator‘s responsibility to remove spaces in the card number

if there are spaces in the Track II card number data.

CardPresent String

For Retail or Restaurant transactions: Flag that indicates whether the card
was present.

For eCommerce transactions: Flag that indicates what type of transaction

occurred.
Valid values:

0 = Card not present, 1 = Card present (for Retail, MOTO, or Restaurant);

D = Digital goods, P = Physical goods (for eCommerce)

Command String

The action code that identifies what type of transaction will be performed.

Valid Values: 1-10, 13-15, ZI, ZH. Example: If running a credit card sale, set

the action code to ―1‖. Consult the section DevKit Constants for a list of

valid values (see page 93). Note: Because the Action property is defined as
―long‖, this property was added to allow action codes that contain strings

(such as Transaction Inquiry - ZI). If the Command property is set, its value

will override the value set in Action.

CmrclCardFlag String

The type of commercial card being submitted. The CommercialCardType

function in the PccBin class should be used to retrieve the 1 character value
from PCCharge that indicates what type of commercial card will be submitted.

See the section Commercial Card Transactions (see page 94) for more

information. Max Length: 1 character
Valid values:

B – Business

P,L,G -- Purchase

C – Corporate

F – Fleet

CustCode String

Customer code for purchasing/commercial cards. This property must be set for

commercial card transactions in order to get the best discount rate.

Additionally, the transaction's action code must indicate that the transaction is
a commercial card transaction. Note: Global East (NDC), terminal based,

requires the customer code be all upper case. Max Length: 25 characters,

alphanumeric only.

CVV2 String

The CVV2 value for the transaction. The card verification value (CVV2 for Visa,
CVC2 for MasterCard, and CID for AMEX and Discover) is a 3 or 4 digit number

that is embossed in the signature panel for Visa, MasterCard, and Discover and

on the front of the card for AMEX. All AMEX cards utilize a 4 digit CID. Max

Length: 4 characters. CVV2 should only be passed on non-swiped
transactions.

CreditPlanNumber String
The credit plan numbers are established by the processor CITI for each
merchant, they define the type of Disclaimer to print on receipts. This

information will vary from merchant to merchant.

DriverID String
Driver identification field. Only required for Wright Express, Voyager and

Fleet One cards.

DriverPIN String Driver personal identification number. Only required for Fuelman cards.

DEST_ZIP_CODE String

Destination Zip Code for American Express purchasing/commercial cards. This

property must be set for American Express commercial card transactions when

using American Express as the processor (or via split dial) in order to get the

best discount rate. Additionally, the transaction's action code must indicate
that the transaction is a commercial card transaction.

EnhancedTransFlag Boolean Used internally

ExpDate String

The expiration date associated with the credit card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

ExtMsg String Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 318

Property Name Data Type Description - PccCharge Properties

GratuityAmnt String

For use with Restaurant transactions only. The actual gratuity amount for a

Sale with Gratuity (action code 14) , Gratuity (action code 13) , or Post-
Authorization (action code 5) transaction. See the section Restaurant

Transactions (see page 104) for more information.

GratuityAmntEst String

For use with Restaurant transactions only. The estimated gratuity amount

for a Sale (action code 1) or Pre-Authorization (action code 4) transaction. If

the GratuityAmntEst is populated, PCCharge will submit the sum of the

values in the Amount and GratuityAmntEst fields for authorization. If the

transaction is authorized, only the value in the Amount field will be placed in
the PCCharge settlement file (if running a Sale). By using the

GratuityAmntEst, the merchant can help ensure that the customer has
enough available credit on their card to leave a tip. Once the customer

indicates the amount of the tip that will be left, a gratuity transaction (action

code 13) must be performed on the sale prior to settlement in order to add

the actual gratuity to the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Note: The
amount MUST include the decimal point and the cents even if the amount is a

whole dollar amount. Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less
than one dollar, the zero place holder must be sent as well. See the section

Restaurant Transactions (see page 104) for more information. Note: It is

recommended to check with the processor or merchant service provider for

guidance on what amount to set this value to. Incorrectly setting this value

can result in downgrades.

IDNumber String

Only required for Voyager cards, dependant on Restriction Code. Four to six

digits. Note: Only used for Pre-Authorization transactions
Update: Beginning with PCCharge version 5.8, this is also used for Citi© Private

Label.

ImpTransFlag Boolean Used internally

IsPurchaseCard Boolean Used internally

ItemCodes String

The Item ID for the transaction. This field is only used for Chase Paymentech
(GSAR) and can store five (5) four-digit codes that are defined by Chase

Paymentech. Example: If ItemCodes is set to 00010002000300040005, it

stores 5 item IDs (0001, 0002, 0003, 0004, and 0005). These numbers must

be obtained from Chase Paymentech.

LanguageCode String Used internally

LastValidDate String

The last year that will be considered a valid expiration date. This value can

be set programmatically or through the PCCharge GUI. Length: 2 digits.

Format: YY Example: If LastValidDate is set to 05, then cards between
06 and 99 are considered to be 1906 to 1999, and cards between 00 and 05 are

2000 to 2005.

MACData String Used internally

MACState MACState Used internally

Manual Long

Flag that indicates whether the transaction was manually entered or swiped. If

the transaction was swiped, the Track property must also be set. Valid

values: 0 = manual transaction, 1 = swiped transaction

MCSC String

The Multiple Count Sequence Count. This is the total number of installments

that will be charged in a non-restaurant recurring billing scenario. Max
Length: 2 characters. Example: If there are 5 payments to be made, set this

property to ―5‖.

PCCharge Version 5.9.0
Updated 2/8/2010

 319

Property Name Data Type Description - PccCharge Properties

MCSN String

In a restaurant environment: The server or cashier id. Max Length: 2. This

field should be passed for reporting and reconciliation purposes. See the
section Restaurant Transactions (see page 104) for more information.

Processor specific note: The Server ID is required for AMEX card transactions.

Also required when using the processor NB and GSAR in restaurant business

type.

In a non-restaurant environment, this field is the Multiple Count Sequence

Number. This is the transaction number within the total number of payment
installments in a recurring billing scenario. Max Length: 2 characters.

Example: If there are 5 payments to be made and this transaction is the first

transaction, set this property to ―1‖. The first transaction should also include
the CVV property, but this value should not be stored or sent for subsequent

transactions.

member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Credit Card Setup window of PCCharge. Max

Length: 32 characters. This value can be alphanumeric.

Method
TxnMethodT

ype
Used internally

Multi String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this
value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default value:

0. See the section Multi-trans Wait for more information (see page 67). This
Flag has no effect if processing will occur over IP or leased line.

Odometer String
The odometer reading. Only required for Fleet One (7 digits), Voyager (7

digits), and Fuelman (6 digits) cards.

Offline String

Flag that indicates whether PCCharge should process the transaction offline. If

the offline flag is set, PCCharge will put the transaction into a .BCH file that
resides in the PCCharge directory for importing at a later time. The file can

only be imported from the PCCharge GUI. Valid values: 1 = TRUE, 0 =
FALSE

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other
methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a "\".

PeriodicPayment String

Flag that indicates whether the transaction is a recurring transaction. Valid

values: 1 = TRUE, 0 = FALSE Note: If periodic payment is set to true,
the recurring billing properties must also be set to achieve the best processing

rates.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

Processor *** String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

ProductDetailAmount_XX String

Note: Only required for the processor NBS. This is the total dollar amount for
PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.

For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a PRODUCT_DETAIL_UNIT_PRICE_1 =
$2.00, therefore the PRODUCT_DETAIL_AMOUNT_1 = $4.00

PCCharge Version 5.9.0
Updated 2/8/2010

 320

Property Name Data Type Description - PccCharge Properties

ProductDetailCount String

Note: Only required for the processor NBS. All card types are configurable

except for Fleet One which is limited to 7 records. Only 1 – 10 records are
currently supported through PCCharge for all card types.

ProductDetailCode_XX String

Note: This is the number of items for RODUCT_DETAIL_PRODUCT_CODE_XX.

PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

ProductDetailQuantity_XX String

Note: Only used for the processor NBS. This is the unit price for

PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and

Fuelman. Currently, PCCharge will support 1 – 10.

Reference String

The reference number from the original transaction (returned by the
processor). Set this property only if processing a Post-Authorization and the

Post-Authorization is being used to add a Voice-Authorization to the batch or

to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The Reference property does not need to be

set if the Post-Authorization completes a standard Pre-Authorization using the

TroutD value of the Pre-Authorization. See the section Follow On

Transactions for more information (see page 70). Max Length: 8 characters.
Note: NBS/ Fleet One cards require a Reference Number to be sent with each

transaction. This is a minimum of 2 digits and a max of 15. This must be all

numeric.

RestrictionCode String

Only required for Voyager cards. This is used to determine the level of
identification and which fields are required. Two digits.

Valid Values:

00 - No ID Number or Odometer required. Fuel and Other allowed.

01 - No ID Number or Odometer required. Fuel only allowed.
10 - ID Number only required. Fuel and Other allowed.

11 - ID Number only required. Fuel only allowed.

20 - Odometer only required. Fuel and Other allowed.
21 - Odometer only required. Fuel only allowed.

30 - ID Number and Odometer required. Fuel and Other allowed.

31 - ID Number and Odometer required. Fuel only allowed.
Note: Required for both manual and swiped transactions.

RFID String

Set to 1 if card information was read from RFID (Radio Frequency

Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

ShiftID String Used internally

SmartTermMsg String Used internally

SmartTermRequest Boolean Used internally

Store String

Flag indicating whether a Voice Authorization transaction should be stored.

This flag should only be submitted when performing a Post-Authorization

transaction (action code 5) that includes an authorization code from the voice
operator. For more information on stored Voice-Authorizations, see page 92.

Valid Value: 1 - Store the Voice Authorization transaction.

Street String

The cardholder's billing street address. The Street property is used for

address verification. Address verification can only be performed on non-

swiped transactions. For FDC: Use first 5 digits only. Note: For manually

keyed transactions, Street is required to qualify for the lowest transaction

rates. Max Length: 20 characters
Citi© - When used with Citi Plan PO Box‘s are not allowed.

TaxAmt String

The tax amount. This is the portion of the amount that is tax. Providing the

tax amount is required to obtain the best rate on commercial card

transactions. Max Length: 9 characters (including the decimal). Format:

DDDDDD.CC. The transaction's action code must indicate that it is a

commercial transaction. Tax amount should be included in the amount field.

TaxExempt Boolean

Tax Exempt Flag. This flag is used to indicate if the purchase is tax exempt.

Used only for Commercial Card Transactions. Valid Values: 1 – Purchase is tax

exempt; 0 – Purchase is not tax exempt.

PCCharge Version 5.9.0
Updated 2/8/2010

 321

Property Name Data Type Description - PccCharge Properties

Ticket String

The ticket or invoice number for internal referencing by merchant. This value

is stored by PCCharge and passed to the processor for referencing purposes.
Max Length: 9 characters. The value can be alphanumeric. Note: Not all

processors support alphanumeric characters. Note: For manually keyed

transactions, Ticket is required to qualify for the lowest transaction rates.
Note: When using NDC, lower case characters must not be used in the ticket

number. Note: When using Elavon (NOVA), ticket numbers can only be

alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the Send method is called. It is highly
recommended that integrators review the section Timeouts (see page 59).

Setting the TimeOut value improperly could cause reconciliation issues and

problems such as double-charging a customer‘s account. Note: The TimeOut

properly is only applicable when programming in an asynchronous manner.

TotalAmount String No longer needed

Track String

The track II data captured from the magnetic strip of the credit card. The

track II data is required to ensure the lowest per-transaction rate from the

processing company when performing swiped transactions (Retail and

Restaurant). Sending the track II data is not allowed if the merchant's industry
type is MOTO or eCommerce. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will be
associated with a transaction and any subsequent transactions related to it.

This property must be set when performing Follow-on Transactions. Review

the section Follow On Transactions (see page 70) for important information
on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page
62).

VehicleID String
Only required for Wright Express cards (5 digits) and Voyager cards (8 digits).

Note: Required for both manual and swiped transactions.

Zip String

The cardholder's zip code. The Zip property is used for address verification.
Max Length: 9 digits. Address verification can only be performed on non-

swiped transactions. Note: For manually keyed transactions, the Zip is
required to qualify for the lowest transaction rates. Note: If submitting the 9-

digit zip, do not include the dash.

Citi© - When used with Citi Plan the zip is limited to 5-digits.

CashierName String Submit Cashier‘s login name.

Password String Submit Cashier‘s password.

NewCashierPassword String

Submit a new password for the Target Cashier.

Note: case-sensitive

Must be complex:

 minimum 7 characters

 must have at least one upper case character

 one numeric character

one special character (e.g., @, $, %, etc.)

NOTE: See Cashier Permissions on page 75 for an example.

NewCashierConfirmPassword String
Resubmit the password for verification. Note: Must match the original
NewCashierPassword

NOTE: See Cashier Permissions on page 75 for an example.

AddCashier1 String Allows the integrator to submit new cashiers up to 5 at a time. Requires 3

Name Value pairs to be entered for each AddCashier tag submitted.
CASHIER_NAME <Name>

PASSWORD <Password>

PERMISSIONS <Permissions>

Example:

<ADD_CASHIER_1>CASHIER_NAME CreditR PASSWORD CreditR123%

AddCashier2 String

AddCashier3 String

AddCashier4 String

PCCharge Version 5.9.0
Updated 2/8/2010

 322

Property Name Data Type Description - PccCharge Properties

AddCashier5 String PERMISSIONS 10000|000|000|000|000000000000|0000|000000

</ADD_CASHIER_1>

NOTE: See Cashier Permissions on page 75 for an example.

TargetCashierName String

Submitted when performing a function to edit a cashier‘s settings. This

specifies which cashier‘s information to alter.

NOTE: See Cashier Permissions on page 75 for an example.

CustomerFirstName
1
 String Applicant‘s first name.

MiddleInt
1
 String Applicant‘s middle initial.

CustomerLastName
1
 String Applicant‘s last name.

Suffix
1
 String Applicant‘s suffix. (Ex. M.D., Ph.D, Jr.)

AptSuite
1
 String Applicant‘s apartment or suite number.

CustomerCity
1
 String Applicant‘s city.

State
1
 String Applicant data. (Ex: GA, FL, MA…)

EMail
1
 String Applicant data. (Ex: XXX@XX.XXX)

Phone_Number
1
 String Applicant data. Format xxxxxxxxxx 10-digits No Dashes

SSNum
1
 String Applicant data. Format xxxxxxxxx 9-digits No Dashes

Birth_Date
1
 String Applicant data. Format is MMDDYYYY.

EmpName
1
 String Applicant data. Employer name.

WorkPhoneNumber
1
 String Applicant data. Employer phone number.

HomeOwner
1
 String

Applicant data.

Format:

'O' = Own
'R' = Rent

'B' = Board

'P' = Live w/ parents

'M' = Military
AnnualIncome

1
 String Applicant data. Format: Up to 6 digits. Whole dollar amount with no decimals.

PhotoIDState
1
 String Applicant data. (Ex: GA, FL, MA…)

CorrelationUID
1
 String Received as a response to a Credit App (P3)

PendingNumber
1
 String Received as a response to a Credit App (P3)

ReplyStatusFlag
1
 Boolean

Reply notification.

Format:

Y = Accept

N = Decline

SourceCode
1
 String

Citi Plan

Format:

Opt In – ―AP‖
Opt Out – ―AO‖

IDType
1
 String

Applicant data. Type of identification being submitted.

Format:
‗D‘ – Driver‘s License

‗O‘ – Other

FraudFlag
1
 Boolean

Code 10.

Values are 1 or 0: 1 = True, 0 = False

AmountHealthCare

String
Total Healthcare Amount. This amount must be greater than or equal to the
sum of the other amount categories. Max: 12 - digits

Format: DDD.CC

AmountPrescription
#
 String

(Optional) Total amount of the prescription-related healthcare expenses in
this transaction. Max: 12 - digits

Format: DDD.CC

AmountVision
#
 String

(Optional) Total amount of the vision-related healthcare expenses in this

transaction. Max: 12 - digits
Format: DDD.CC

mailto:XXX@XX.XXX

PCCharge Version 5.9.0
Updated 2/8/2010

 323

Property Name Data Type Description - PccCharge Properties

AmountClinic
#
 String

(Optional) Total amount of the clinic-related healthcare expenses in this

transaction. Max: 12 - digits
Format: DDD.CC

AmountDental
#
 String

(Optional) Total amount of the dental-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

AmountTransit
#
 String

(Optional) Reserved for future use. Max: 12 - digits
Format: DDD.CC

AmountCopay
#
 String

(Optional) Reserved for future use. Max: 12 - digits

Format: DDD.CC

FSA
#
 Boolean

Indicates the transaction is FSA. This will bypass PCCharge BIN checking as
PCCharge will assume that the POS has verified that this card has met the BIN

requirements for an FSA transaction.

1 = True, 0 = False

Note: If this is not passed it defaults to False.

 These properties are the minimum required to process a Sale or Pre-Authorization transaction.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the Processor and MerchantNumber
properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The

―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, Processor and

MerchantNumber should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page

70) for more information.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page

115.

Additional tags used to process FSA/HRA transactions. For more information please see the section about FSA on page 98.

PccCharge Methods

Method Name
Returned

Value
Description - PccCharge Methods

Cancel None Cancels transaction in progress

CheckPCard Boolean

Used to determine whether a credit card is a commercial card or not. This

method requires that a credit card number be passed as a parameter.

Returns TRUE if a commercial card, FALSE otherwise.

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered (if asynchronous) and the GetErrorDesc method will give a brief
description of the error. Consult the section System Error Codes and

Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetACI String
Returns the Authorization Characteristics Indicator is that is provided by the
card associations. This value is stored for settlement.

GetAddText1 String

Only supported on Fleet One, this field contains miscellaneous additional

text returned from host. Currently PCCharge will support GetAddText1-

GetAddText4.

PCCharge Version 5.9.0
Updated 2/8/2010

 324

Method Name
Returned

Value
Description - PccCharge Methods

GetAmountDue String

Returns the amount due, only for Elavon (NOVA) pre-paid and FSA
functionality. Format is DDD.CC

Note: ―Enable Pre-Paid Cards‖ option within PCCharge MUST be checked for

this feature to work. The option is located under Setup>Credit Card
Company>Extended Data and only with the Credit Card Company set to

Elavon (NOVA). This option is only configurable in PCCharge version 5.7.1

release I sp9a and above.

Note: For this to work with FSA transactions, one must enable FSA and

Partial Auth within the Extended Data Screen for supported processors.

GetAuth String

For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was

rejected.

GetAuthAmount String
Used in partial redemption transactions where only part of the amount was
authorized. Returns the actual authorized amount.

GetAVS String

Returns the AVS response code from the issuing bank. If performing Address

Verification on card-not-present transactions, this code indicates how well

the AVS information passed in matches what the issuing bank has on file for
the cardholder. Consult the section DevKit Constants for a description of

values that may be returned (see page 141)

GetCaptured Boolean

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result

in a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been

approved, and that the transaction has been placed in the open batch.

GetCreditCardType String

The GetCreditCardType method returns the abbreviation of the credit
card issuer. This method requires that a credit card number be passed as a

parameter. Consult the section DevKit Constants for descriptions of values

(see page 141). (GetCreditCardType is the same as GetCardIssuer).

GetCCAvailBalance String

Pre-paid credit cards with Elavon (NOVA) - Returns the PrePaid card

balance.
FSA – Returns the available balance on the FSA/HRA card.

Format: DDD.CC

GetCVV2 String

Returns the CVV2/CVC2/CID response code from the issuing bank. If

performing CVV2/CVC2/CID validation on card-not-present transactions, this
code indicates if the CVV2/CVC2/CID code passed in matches what the

issuing bank has on file for the cardholder. Consult the section DevKit

Constants for a description of values that may be returned (see page 141)

GetDCAvailBalance String
Returns the available balance on pre-paid debit cards. Only for pre-paid
debit cards with Elavon (NOVA).

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be
returned (see page 148).

PCCharge Version 5.9.0
Updated 2/8/2010

 325

Method Name
Returned

Value
Description - PccCharge Methods

GetHostType Integer

The GetHostType method returns an integer that indicates if a processor /

merchant number is Host based or Terminal based. GetHostType requires
three parameters:

1) Processor code - Consult the section DevKit Constants (see page

141) for a list of valid processor codes
2) Merchant account - Must be a valid merchant account set up in

PCCharge

3) TID type - Valid Values for TID type: 0 – Credit; 1 – Check; 2 –

Debit; 3 – EBT; 4 – GiftCard

GetHostType will return one the following values based on the parameters

passed in:

0 – The processor is Terminal based

1 – The processor is Host based

-1 – The processor is a Hybrid (supports both Host and Terminal processing)
or invalid processor / merchant number.

Example: .GetHostType(“VISA”, “999999999911”, 0) will return 0
Note: Chase Paymentech (GSAR), Elavon (NOVA), and FDMS South / NaBanco

(NB) are considered hybrid processors. GetHostType will return a -1 for
these processors.

GetIND String

Returns the IND code. The IND code is a transaction description code and an

Interchange compliance field. This value is not returned by all processing

companies.

GetMSI String
Returns the Market Specific Indicator. This value indicates the transaction‘s
market segment. This value is assigned by the card associations and is not

returned with all transactions.

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetPCard String
Returns 1 if PCCharge recognizes the card as a purchasing/corporate card.

Otherwise, PCCharge returns 0.

GetPEM String
Returns the Point of Entry Mode that is associated with the transaction. This

value is not returned by all processing companies.

GetPS2000 String

PS2000 Data. This data will be as received during the original authorization
processing. It will not be present for offline transactions. PS2000 Data is a

variable; it will either be one character or up to 20. It is data concerning the

card type and transaction that the processor will send back during the
authorization process. This value is not returned by all processing

companies.

GetRecordCount String The number of records matching the inquiry (ZI command).

GetRefNumber String

Returns the reference number associated with the transaction. The

reference number is assigned by the card associations. The reference
number is used to help identify the transaction and is useful for the

cardholder and merchant when doing research. This value is not returned

with all transactions.

GetRespCode String
Returns the response code that is provided by the processor. This value is not
returned by all processing companies.

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetRestrictCode String Note: Only supported on Fleet One. The product restriction code.

GetRET String
Returns the Retrieval reference number. This value is not returned by all

processing companies

GetTBatch String
Returns the active batch number for the transaction. This value is not

returned by all processing companies.

GetTDate String
Returns the date that the transaction was processed. This value is not

returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 326

Method Name
Returned

Value
Description - PccCharge Methods

GetTerminationStatus String

Retrieves Termination Status which returns a ―6‖ upon successful
transaction. If anything other than a ―6‖ is returned there may be an issue

with the settlement file and should be investigated. This applies to : GSAR

and NBS

Response:
6 = Successful Transaction

GetTI String
Returns the Transaction Identifier that is returned from the processor. This

value is not returned by all processing companies.

GetTicket String
Returns the ticket number or invoice of the transaction. This value is echoed
back from the original transaction or is generated by PCCharge if one is

required to complete the transaction.

GetTICode String

Returns the Transaction Indicator Code that is returned from the processor.

The Transaction Indicator Code is a Validation code for VISA / MasterCard.
This value is not returned by all processing companies.

GetTIM String
Returns the Time of the transaction. This value is not returned by all

processing companies.

GetTitem String

Returns the Transaction Item number or the number that is associated with

the transaction in the settlement file. This value is not returned by all
processing companies.

GetTraceNumber String
Returns the trace number from the processor. Only for pre-paid credit cards

with Elavon (NOVA).

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTransRecord String
Contains nested XML tags providing information on transaction(s) pulled from

Trans table in the PCCharge database (pccw.mdb) (ZI command).

GetTransactionReferenceNumb

er
String

Returns the transaction reference number from the processor. Only for pre-
paid credit cards with Elavon (NOVA).

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can
be used by integrators that wish to parse the results of the transaction

themselves or for troubleshooting purposes. Refer to the section File
Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process

transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 327

Method Name
Returned

Value
Description - PccCharge Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has two optional parameters. The first parameter

indicates whether the Send method will process transactions synchronously
or asynchronously. Note: The object must defined to use events in order to

allow asynchronous communication. Valid Values:

True – process asynchronously (Default)

False – process synchronously

The second parameter indicates what message format will be used for the

request and response files. This parameter may be specified by using a

numerical value (or an enumerated value if the programming language being
used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation

assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send True, 3

Note: The other values that appear in the enumerated list are for internal
use only-- do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean Returns TRUE for card of correct length

ValidCardLengthII Boolean Returns TRUE for card of correct length

ValidDate Boolean
The ValidDate method returns TRUE if the expiration date provided in the

ExpDate property is valid, or FALSE if it is not.

ValidIssuer Boolean Returns TRUE for valid card issuer

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

VerifyCreditCard Boolean

The VerifyCreditCard method returns TRUE if the credit card number‘s
format is valid and meets the requirements set forth by the credit card

companies, FALSE if it does not. If FALSE is returned, use the

GetErrorCode and GetErrorDesc methods to determine the reason for

failure. VerifyCreditCard has a required string parameter in which the
credit card number to be checked must be passed.

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in

the ExpDate property is correct and in the right format, or FALSE if it is

not. VerifyExpDate calls the ValidDate function to validate the

expiration date. If FALSE is returned, check the error code to determine the
reason for failure. Consult the section System Error Codes and Descriptions

for a list of valid errors that will be returned (see page 148).

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.
Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property
must be set before calling this Method.

VerifyProcessor Boolean Returns TRUE if processor is valid

GetCorrelationUID
1
 String Returned from Citi, needed for Counter Offer Submission.

PCCharge Version 5.9.0
Updated 2/8/2010

 328

Method Name
Returned

Value
Description - PccCharge Methods

GetPendingNumber
1
 String Returned from Citi, needed for Counter Offer Submission.

GetReplyFlag
1
 String „Y‟ or „N‟ sent to Citi to notify message is a reply to an offer.

GetOpentoBuy
1
 String

Only present in the response if the ―Display OTB‖ is turned ON. Decimal is

included.

GetCreditLimit
1
 String Only present the in the response. Retrieves credit limit.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page

115.

PccCharge Events

Event Name Description - PccCharge Events

Error

The Error event is fired any time an error occurs in the class. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

PCCharge Version 5.9.0
Updated 2/8/2010

 329

PCCDebit Class

The PCCDebit class provides integrators with properties and methods used to submit credit card

transactions to PCCharge. To use the PCCDebit class to integrate transaction processing, follow the

procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
PCCDebit Properties table are the minimum required to process a Debit Sale transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

4. If programming asynchronously, wait for the Error or Finish event to occur.

5. If programming synchronously, code using the .Get methods may be placed immediately after the

Send method

6. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

7. Call the DeleteUserFiles method to delete all files related to the transaction.

8. Destroy the object.

When processing debit cards, a PINpad is required to allow the customer to enter their PIN. In
addition, debit card information is always collected via a card swipe device, never via keyboard entry.
Because of this, a card reader is also required.

When processing U.S. debit card transactions, merchants have the option of allowing the customer to
receive cash back on a transaction. For instance, the customer purchases $50 of products and wants
$25 cash back, set the Amount to 50.00 and CashBack to 25.00. This will withdraw a total of $75 from
the debit card account, $50 for the products and $25 for cash to give to the customer.

Consult the section Pseudo-code (see page 156) for various examples that may be followed when using

the Debit class to perform transaction processing.

For information on integrating Canadian Debit, see the section Canadian (Interac) Debit Transactions
(see page 112).

This is a Multi Use class.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 330

PCCDebit Properties

Property Name Data Type Description - PCCDebit Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

AuthCode String The AuthCode field is only applicable to EBT transactions.

BDate String

The Business / Batch Date. If populated, this value will be placed in the

Business Date column of the transaction record in the PCCharge database

(pccw.mdb). Format: MMDDYY

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the

transaction is being ran for payment of a bill (ultilty, monthly gym dues,

etc.) Valid values:

0 – Non-Bill payment transaction
1 – Bill payment transaction

Card String
The Debit card number that will be used when processing the transaction.

Max Length: 20 characters. Example: 5424180279791765

CashBack String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total

amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some debit processors do not support the

cash back feature.

DebitType String

Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Set this to the bank account type that the customer

specified when entering transaction data into the PINpad.

 Valid Values: ―Chequing‖ or ―Savings‖

DriverID String
Driver identification field. Only required for Wright Express, Voyager and
Fleet One cards.

DriverPIN String Driver personal identification number. Only required for Fuelman cards.

EBTType String Used internally

EnhancedTransFlag Boolean Used internally

ExpDate String

The expiration date associated with the Debit card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

Set this property if there is an expiration date associated with the Debit
card.

ExtFile File Used internally

Gratuity String
Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. This is the Gratuity Amount of the transaction.

IDNumber String

Only required for Voyager cards, dependant on Restriction Code. Four to six
digits. Note: Only used for Pre-Authorization transactions

Update: Beginning with PCCharge version 5.8, this is also used for Citi©

Private Label.

PCCharge Version 5.9.0
Updated 2/8/2010

 331

Property Name Data Type Description - PCCDebit Properties

KeySerialNumber String

If a Key Serial Number is returned from the PINpad, this property should be

populated with that number. If processing transactions with a PINpad using
DUKPT encryption, this value is sixteen or twenty characters long

(depending on the processor‘s encryption). The PCCharge DevKit provides

several tools for retrieving data from PINpads. If the PCCharge integration

method chosen doesn‘t support these tools or the tools do not support the
PINpad being used, a direct interface to the PINpad must be written by the

integrator. If processing transactions with a Verifone SC5000 PINpad, set

this property to the Chip Serial Number of the PINpad.

LanguageCode String

Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Set this to the language that is indicated by the

Language Code that is encoded in the track II data on the customer‘s card.

Valid Values:
―English‖ or ―French‖ (pass in the literal string)

MACData String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Set this to the MAC Block value returned by the

PINpad.

MACState MACState Used internally

Manual Integer

Flag that indicates whether the transaction was swiped or manually entered.

This property must be set to 1 (swiped) and the Track property must also be
set.

member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Debit Card Setup window of PCCharge.
Max Length: 32 characters. This value can be alphanumeric.

Method
TxnMethodT

ype
Used internally

Multi Boolean

Flag that indicates whether PCCharge should leave the modem connection
open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

Odometer String
The odometer reading. Only required for Fleet One (7 digits), Voyager (7

digits), and Fuelman (6 digits) cards.

OrigPurchData String
The Original Purchase Data. Used when performing a Debit Return with the
processors TSYS, Heartland, RBS WorldPay, and NPC. This is the original

transaction date. Format: DDMMhhmm

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other
methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a "\".

Pin String

The encrypted PIN block that is retrieved from the PINpad. The PIN is

provided to the processor for verification. Length: 16 characters. The

PCCharge DevKit provides several tools for retrieving data from PINpads. If
the PCCharge integration method chosen doesn‘t support these tools or the

tools do not support the PINpad being used, a direct interface to the PINpad

must be written by the integrator.

Processor *** String

The code for the processing company that will be used to process the
transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed
in the Processing Company Codes section (see page 150).

PCCharge Version 5.9.0
Updated 2/8/2010

 332

Property Name Data Type Description - PCCDebit Properties

ProductDetailAmount_XX String

Note: Only required for the processor NBS. This is the total dollar amount

for PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.
For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a PRODUCT_DETAIL_UNIT_PRICE_1 =

$2.00, therefore the PRODUCT_DETAIL_AMOUNT_1 = $4.00

ProductDetailCount String
Note: Only required for the processor NBS. All card types are configurable
except for Fleet One which is limited to 7 records. Only 1 – 10 records are

currently supported through PCCharge for all card types.

ProductDetailCode_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

ProductDetailQuantity_XX String

Note: Only used for the processor NBS. This is the unit price for

PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and
Fuelman. Currently, PCCharge will support 1 – 10.

Reference String

NBS/ Fleet One cards require a Reference Number to be sent with each

transaction. This is a minimum of 2 digits and a max of 15. This must be all

numeric.

RestrictionCode String

Only required for Voyager cards. This is used to determine the level of
identification and which fields are required. Two digits.

Valid Values:

00 - No ID Number or Odometer required. Fuel and Other allowed.
01 - No ID Number or Odometer required. Fuel only allowed.

10 - ID Number only required. Fuel and Other allowed.

11 - ID Number only required. Fuel only allowed.
20 - Odometer only required. Fuel and Other allowed.

21 - Odometer only required. Fuel only allowed.

30 - ID Number and Odometer required. Fuel and Other allowed.

31 - ID Number and Odometer required. Fuel only allowed.
Note: Required for both manual and swiped transactions.

ShiftID String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. The Shift ID. This value is optional. Format:

Alphanumeric Max Length: 1 character.

SmartTermMsg String Used internally

SmartTermRequest Boolean Used internally

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:
Not all processors support alphanumeric characters. Note: When using NDC,

lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the Send method is called. It is highly

recommended that integrators review the section Timeouts (see page 59).

Setting the TimeOut value improperly could cause reconciliation issues and

problems such as double-charging a customer‘s account. Note: The TimeOut
properly is only applicable when programming in an asynchronous manner.

Track String

The track II data captured from the magnetic strip of the card. The track II
data is required. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will
be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

PCCharge Version 5.9.0
Updated 2/8/2010

 333

Property Name Data Type Description - PCCDebit Properties

VehicleID String
Only required for Wright Express cards (5 digits) and Voyager cards (8 digits).

Note: Required for both manual and swiped transactions.

CashierName String Submit Cashier‘s login name.

Password String Submit Cashier‘s password.

 These properties are required to process a Debit Sale transaction.

 These properties are required to process a Canadian Debit Sale transaction using Global Payments East (NDC) and the SC5000

PINpad.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they
should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the Processor and MerchantNumber
properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The

―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, Processor and

MerchantNumber should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page
70) for more information.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

PCCDebit Methods

Method Name
Returned
Value

Description - PCCDebit Methods

Cancel None Cancels current transaction

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered (if asynchronous) and the GetErrorDesc method will give a brief

description of the error. Consult the section System Error Codes and
Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetAddText1 String

Only supported on Fleet One, this field contains miscellaneous additional

text returned from host. Currently PCCharge will support GetAddText1-
GetAddText4.

GetApproved Boolean
The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

GetAuxRespCode String When using the SC5000 PINpad, returns the ISO response code

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error

Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetMSI String
For Debit Master Session: Returns the new master key (if one exists) sent by

the processor that should be passed to the PINpad.

PCCharge Version 5.9.0
Updated 2/8/2010

 334

Method Name
Returned

Value
Description - PCCDebit Methods

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber
property.

GetPOSSequenceNumber String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Returns the current POS Sequence Number for the

PINpad. The Path property must be set to the PCCharge directory and the
PINpad‘s Chip Serial Number must be passed as a parameter when calling the

GetPOSSequenceNumber method.

GetRefNumber String

Returns the reference number associated with the transaction. The

reference number is used to help identify the transaction and is useful for

the cardholder and merchant when doing research. This value is not
returned with all transactions.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

GetRestrictCode String Note: Only supported on Fleet One. The product restriction code.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetTI String
Returns the Transaction Identifier that is returned from the processor. This

value is not returned by all processing companies.

GetTICode String
Returns the Transaction Indicator Code that is returned from the processor.

This value is not returned by all processing companies.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can

be used to view the results of a Transaction Inquiry (ZI) transaction. Refer

to the section Transaction Inquiry (see page 127) for more information. The
text can also be used by integrators that wish to parse the results of the

transaction themselves or for troubleshooting purposes. Refer to the section

File Method (see page 478) for a description of the tags and values that are
returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 335

Method Name
Returned

Value
Description - PCCDebit Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has two optional parameters. The first parameter

indicates whether the Send method will process transactions synchronously
or asynchronously. Note: The object must defined to use events in order to

allow asynchronous communication. Valid Values:

True – process asynchronously (Default)

False – process synchronously

The second parameter indicates what message format will be used for the

request and response files. This parameter may be specified by using a

numerical value (or an enumerated value if the programming language being
used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation

assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send True, 3

Note: The other values that appear in the enumerated list are for internal
use only-- do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

PCCDebit Events

Event Name Description - PCCDebit Events

Error

The Error event is fired any time an error occurs in the class. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the

section System Error Codes and Descriptions for a list of valid errors that will be returned (see page
148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

PCCharge Version 5.9.0
Updated 2/8/2010

 336

PccCheck Class

The PccCheck class provides integrators with properties and methods used to submit check

verification, guarantee, and conversion transactions to PCCharge. To use the PccCheck class to

integrate transaction processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
PccCheck Properties table are the minimum required to process a check verification transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

4. If programming asynchronously, wait for the Error or Finish event to occur.

5. If programming synchronously, code using the .Get methods may be placed immediately after the

Send method

6. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

7. Call the DeleteUserFiles method to delete all files related to the transaction.

8. Destroy the object.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 337

PccCheck Properties

Property Name Data Type Description - PccCheck Properties

Account_Number String
For Check, MICR, or Double ID: The account number that will be used when
processing the transaction. Max Length: 20 characters.

Action Long
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with
leading zeroes.

Example: Incorrect format ―0001.00‖.

Birth_Date String

The date of birth of the check writer. Length: Exactly six characters.

Format: MMDDYY. The birth date is required for DL (Driver‘s License) check
transactions.

Cash_Back String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total
amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.

Max Length: 9 characters. Note: Some processors do not support the cash
back feature.

CashierNum String The Cashier Number

Check_Number String
The check number of the check that will be used when processing the

transaction. Max Length: 10 characters.

Drivers_License String
The driver‘s license number of the individual writing the check. Max Length:
20 characters. The driver‘s license is required for DL (Driver‘s License)

transactions and when performing Double ID transactions.

EnhancedTransFlag Boolean Used internally

LanguageCode String Used internally

ManagerNum String
Used for BPS Double ID transactions. Optional Manager Number for manager
override.

Manual Long
Flag that indicates whether the transaction was manually entered or swiped.

Valid values: 0 = manual transaction, 1 = swiped transaction

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Check Services Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

Method
TxnMethodT

ype
Used internally

MICR String
The raw MICR data from the bottom of the check. Used for conversion

transactions.

Multi Boolean

Flag that indicates whether PCCharge should leave the modem connection
open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

PCCharge Version 5.9.0
Updated 2/8/2010

 338

Property Name Data Type Description - PccCheck Properties

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other
methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a "\".

Phone_Number String

The phone number of the individual writing the check. Max Length: 7 digits.

Format: digits only. The phone number is required for COD (Checks On

Delivery).

Processor String

The code for the processing company that will be used to process the
transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed
in the Processing Company Codes section (see page 150).

Services Integer

The type of check verification to be performed.

Valid values:

0 – MICR

1 – Checks-On-Delivery

2 – Driver‘s License

3 – Double ID

Note: The value set in the Services property overrides the value set in the

Action property.

ShiftID String Used internally

State String
The state code of the state that issued the check writer‘s driver‘s license.

The state code is required for DL (Driver‘s License). Format: 2 characters.

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing
purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,

lower case characters must not be used in the ticket number. Note: When
using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the Send method is called. It is highly
recommended that integrators review the section Timeouts (see page 59).

Setting the TimeOut value improperly could cause reconciliation issues and

problems such as double-charging a customer‘s account. Note: The TimeOut

properly is only applicable when programming in an asynchronous manner.

Transit_Number String

The Transit Routing Number / ABA number that will be used when processing

the transaction. This value indicates which bank issued the check. Max

Length: 9 characters. This value is required for MICR transactions and when

performing Double ID transactions.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

Zip_Code String

The check writer‘s ZIP code. Max Length: 9 characters. Format: digits only.

This value is required for COD transactions. Note: If submitting the 9-digit
zip, do not include the dash.

Note: To perform Double ID, both the MICR and Drivers_License fields must be populated.

 These properties are required, regardless of service type.

PCCharge Version 5.9.0
Updated 2/8/2010

 339

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators
review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

 COD -- required for Checks-On-Delivery
 DL -- required for Driver‘s License

 MICR -- required for MICR

PccCheck Methods

Method Name
Returned

Value
Description - PccCheck Methods

Cancel None Cancels transaction in progress

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered (if asynchronous) and the GetErrorDesc method will give a brief

description of the error. Consult the section System Error Codes and
Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetApproved Boolean

The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned. An

―APPROVED‖ response indicates that a Verification has been approved.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetRefNumber String

Returns the reference number associated with the transaction. The
reference number is used to help identify the transaction and is useful for

the check writer and merchant when doing research. This value is not

returned with all transactions.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 340

Method Name
Returned

Value
Description - PccCheck Methods

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can

be used by integrators that wish to parse the results of the transaction
themselves or for troubleshooting purposes. Refer to the section File

Method (see page 478) for a description of the tags and values that are

returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC

exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is

performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to

why the file exists. Consult the section System Error Codes and Descriptions
for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions.

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the

action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the
section System Error Codes and Descriptions for a list of valid errors that

will be returned (see page 148).

The Send method has two optional parameters. The first parameter

indicates whether the Send method will process transactions synchronously
or asynchronously. Note: The object must defined to use events in order to

allow asynchronous communication. Valid Values:

True – process asynchronously (Default)

False – process synchronously

The second parameter indicates what message format will be used for the
request and response files. This parameter may be specified by using a

numerical value (or an enumerated value if the programming language being

used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation
assumes that the XML message format parameter has been set. (The legacy

INP message format is selected by default for backwards compatibility
reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send True, 3
Note: The other values that appear in the enumerated list are for internal

use only-- do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.

Consult the section System Error Codes and Descriptions for a list of valid
errors that will be returned (see page 148).

CashierName String Submit Cashier‘s login name.

Password String Submit Cashier‘s password.

PCCharge Version 5.9.0
Updated 2/8/2010

 341

PccCheck Events

Event Name Description - PccCheck Events

Error

The Error event is fired any time an error occurs in the class. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

PCCharge Version 5.9.0
Updated 2/8/2010

 342

PCCEBT Class

The PCCEBT class provides integrators with properties and methods used to submit EBT transactions to

PCCharge. To use the PCCEBT class to integrate transaction processing, follow the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
PCCEBT Properties table are the minimum required to process an EBT transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is
passed as a parameter to activate the XML message format)

4. If programming asynchronously, wait for the Error or Finish event to occur.

5. If programming synchronously, code using the .Get methods may be placed immediately after the

Send method

6. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

7. Call the DeleteUserFiles method to delete all files related to the transaction.

8. Destroy the object.

When processing EBT cards, a PINpad is required to allow the customer to enter their PIN. In addition,
debit card information is always collected via a card swipe device, never via keyboard entry. Because
of this, a card reader is also required. (Some EBT transactions can be manually entered).

When processing EBT card transactions, merchants have the option of allowing the customer to receive
cash back on a transaction. For instance, the customer purchases $50 of products and wants $25 cash
back, set the Amount to 50.00 and CashBack to 25.00. This will withdraw a total of $75 from the EBT
card account, $50 for the products and $25 for cash to give to the customer.

This is a Multi Use Class.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

PCCharge Version 5.9.0
Updated 2/8/2010

 343

PCCEBT Properties

Property Name Data Type Description - PCCEBT Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

AuthCode String
For an EBT Post (Prior Auth Sale) or Force transaction: The Authorization

code from the original voice authorization.

BDate String

The Business / Batch Date. If populated, this value will be placed in the

Business Date column of the transaction record in the PCCharge database

(pccw.mdb). Format: MMDDYY

Billpay String

Only valid for Visa debit and credit transactions. It is used to indicate the
transaction is being ran for payment of a bill (ultilty, monthly gym dues,

etc.) Valid values:

0 – Non-Bill payment transaction
1 – Bill payment transaction

Card String
The EBT card number that will be used when processing the transaction. Max

Length: 20 characters. Example: 5424180279791765

CashBack String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total
amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some debit processors do not support the

cash back feature.

EBTType String
Indicates what type of EBT transaction will be performed. Valid Values: F –

Food stamp transaction; C – Cash benefits transaction

EnhancedTransFlag Boolean Used internally

ExpDate String

The expiration date associated with the EBT card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

Set this property if there is an expiration date associated with the EBT card.

ExtFile String Used internally

KeySerialNumber String

If a Key Serial Number is returned from the PINpad, this property should be

populated with that number. This value is only applicable for PINpads using
DUKPT encryption. This value is sixteen or twenty characters long

(depending on the processor‘s encryption). The PCCharge DevKit provides

several tools for retrieving data from PINpads. If the PCCharge integration
method chosen doesn‘t support these tools or the tools do not support the

PINpad being used, a direct interface to the PINpad must be written by the

integrator.

MACData String Used internally

MACState MACState Used internally

Manual Integer

Flag that indicates whether the transaction was swiped or manually entered.

This property must be set to 1 (swiped) for swiped EBT transactions. If the

transaction was swiped, the Track property must also be set. If performing
a manually keyed EBT transaction, such as a Force or Voucher, set this

property to 0 (manually entered).

PCCharge Version 5.9.0
Updated 2/8/2010

 344

Property Name Data Type Description - PCCEBT Properties

member String The cardholder‘s name. Max Length: 20 characters.

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property
must match what is set up in the EBT Card Setup window of PCCharge. Max

Length: 32 characters. This value can be alphanumeric.

Method
TxnMethodT

ype
Used internally

Multi Boolean

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

OrigPurchData String Not needed for EBT Transactions.

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other

methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Pin String

The encrypted PIN block that is retrieved from the PINpad. The PIN is

provided to the processor for verification. Length: 16 characters. The
PCCharge DevKit provides several tools for retrieving data from PINpads. If

the PCCharge integration method chosen doesn‘t support these tools or the

tools do not support the PINpad being used, a direct interface to the PINpad
must be written by the integrator.

Processor String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a
valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

Reference String No longer needed

SmartTermMsg String Used internally

SmartTermRequest Boolean Used internally

Ticket String

The ticket or invoice number for internal referencing by merchant. This
value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,
lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

TimeOut Long

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the Send method is called. It is highly
recommended that integrators review the section Timeouts (see page 59).

Setting the TimeOut value improperly could cause reconciliation issues and

problems such as double-charging a customer‘s account. Note: The TimeOut
properly is only applicable when programming in an asynchronous manner.

Track String

The track II data captured from the magnetic strip of the card. The track II

data is required for swiped EBT transactions. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567
Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖
transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

PCCharge Version 5.9.0
Updated 2/8/2010

 345

Property Name Data Type Description - PCCEBT Properties

User String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

VoucherNum String

The voucher number for an EBT force transaction. The voucher is provided

by the processor at the time of authorization and must be supplied to clear
the voucher.

CashierName String Submit Cashier‘s login name.

Password String Submit Cashier‘s password.

 These fields are required to process a transaction.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they
should be implemented.

PCCEBT Methods

Method Name
Returned

Value
Description - PCCEBT Methods

BalanceTotals String Current amount of EBT transactions

Cancel None Cancels current transaction

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered (if asynchronous) and the GetErrorDesc method will give a brief
description of the error. Consult the section System Error Codes and

Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetApproved Boolean
The GetApproved method returns TRUE if PCCharge returns "APPROVED" as

the result of the transaction. Otherwise, FALSE will be returned.

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was
rejected.

GetAuxRespCode String When using the SC5000 PINpad, returns the ISO response code

GetEBTCashBalance String
Returns the remaining balance on a Cash Benefits card. This value is not

returned by all processing companies.

GetEBTFoodBalance String
Returns the remaining balance on a Food Stamp card. This value is not
returned by all processing companies.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetRefNumber String

Returns the reference number associated with the transaction. The

reference number is used to help identify the transaction and is useful for
the cardholder and merchant when doing research. This value is not

returned with all transactions.

GetRespCode String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 346

Method Name
Returned

Value
Description - PCCEBT Methods

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

GetTI String
Returns the Transaction Identifier that is returned from the processor. This

value is not returned by all processing companies.

GetTICode String
Returns the Transaction Indicator Code that is returned from the processor.
This value is not returned by all processing companies.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can
be used by integrators that wish to parse the results of the transaction

themselves or for troubleshooting purposes. Refer to the section File

Method (see page 478) for a description of the tags and values that are
returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 347

Method Name
Returned

Value
Description - PCCEBT Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has two optional parameters. The first parameter

indicates whether the Send method will process transactions synchronously
or asynchronously. Note: The object must defined to use events in order to

allow asynchronous communication. Valid Values:

True – process asynchronously (Default)

False – process synchronously

The second parameter indicates what message format will be used for the

request and response files. This parameter may be specified by using a

numerical value (or an enumerated value if the programming language being
used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation

assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send True, 3

Note: The other values that appear in the enumerated list are for internal
use only-- do not attempt to use any values other than the ones listed above.

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

PCCharge Version 5.9.0
Updated 2/8/2010

 348

PCCEBT Events

Event Name Description - PCCEBT Events

Error

The Error event is fired any time an error occurs in the class. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was
approved. A list of valid results can be found in the Transaction Result Constants section (see page

154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

PCCharge Version 5.9.0
Updated 2/8/2010

 349

PCCGiftCard Class

The PCCGiftCard class provides integrators with properties and methods used to submit gift card

transactions to PCCharge. To use the PCCGiftCard class to integrate transaction processing, follow

the procedure below:

1. Set the path to the PCCharge directory and check to see if PCCharge is running and available to

process transactions by using the PccSysExists method.

2. Assign the appropriate values to the properties required for the transaction to be performed and

validate the values using the various .Verify methods. (The properties marked with a in the
PCCGiftCard Properties table are the minimum required to process a Gift Card Redemption / Sale
transaction.)

3. Call the Send method. (Note: When calling the Send method, it is recommended that ―3‖ is

passed as a parameter to activate the XML message format)

4. If programming asynchronously, wait for the Error or Finish event to occur.

5. If programming synchronously, code using the .Get methods may be placed immediately after the

Send method

6. Call the various .Get methods to determine the outcome of the transaction. The most important

information can be acquired by calling the GetResult and GetAuth methods. If an error occurs,

call the GetErrorCode and GetErrorDesc methods to determine the nature of the error.

7. Call the DeleteUserFiles method to delete all files related to the transaction.

8. Destroy the object.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

VeriFone Stored Value API (GAPI)

The VeriFone Stored Value API (GAPI) is a proprietary specification that allows for stored value card
processors to add themselves to PCCharge. Applications using GAPI can also integrate with PCCharge
using the various integration methods. For more information on adding a stored value card processor
to PCCharge, and how to obtain the VeriFone Stored Value API, please contact VeriFone sales at 1-800-
725-9264.

PCCharge Version 5.9.0
Updated 2/8/2010

 350

PCCGiftCard Properties

Property Name Data Type Description - PCCGiftCard Properties

Action Long
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

Amount String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

For Valuelink (VLNK) Balance Adjustment: Format: +/-DDDDD.CC.

Authcode String

For Void transactions. For VTEC and VLNK, set to auth code of original
transaction (the one to be voided). For GSAR and MELL, set to ref num of

original transaction (the one to be voided). For BPS, set to retrieval

reference number of original transaction (the one to be voided).

BDate String

The Business / Batch Date. If populated, this value will be placed in the

Business Date column of the transaction record in the PCCharge database

(pccw.mdb). Format: MMDDYY

Card String
The gift card number that will be used when processing the transaction. Max

Length: 20 characters.

CardSeqNum String

For GSAR multi Issuance, sequence number of cards issued at time of

transaction. Example: Ten cards are being issued. To send the fifth, set

CardSeqNum to 5.

CashierID String
VTEC and VLNK -- (optional) –numeric value that identifies the cashier
performing the transaction.

DeactivateRefund Boolean

Flag that indicates whether to provide the customer a refund when

performing a VTEC Deactivate transaction. Valid Values:

1 – Provide refund

0 – Do not provide refund

EnhancedTransFlag Boolean Used internally

ExpDate String

The expiration date associated with the gift card that will be processed. Must

be exactly four characters long. Format: MMYY Example: 1208 Note: Most
gift cards do not have an expiration date.

ExtFile String Used internally

FORCE Boolean

Set to true (1 = true, 0 = false) to process a transaction for which an approval

code has already been issued -- only valid for a GSAR Redemption

transaction or a single GSAR Issuance/Add Value transaction.

GiftPin String
Only used for the processor SVS. To retrieve pin, call GetGfitPin upon

activation. Used for only for virtual gift card transactions.

IndType String
Indicates industry type (1 = retail, 2 = restaurant). VLNK -- (0 = retail, 1 =

restaurant, 2 = e-commerce).

LanguageCode String Used internally

LastValidDate String

The last year that will be considered a valid expiration date. Length: 2

digits. Format: YY Example: If LastValidDate is set to 05, then cards
between 06 and 99 are considered to be 1906 to 1999, and cards between 00

and 05 are 2000 to 2005.

Loyalty Boolean VTEC loyalty transaction flag (0 = non-loyalty, 1 = loyalty).

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property
must match what is set up in the Gift Card Setup window of PCCharge. Max

Length: 32 characters. This value can be alphanumeric.

PCCharge Version 5.9.0
Updated 2/8/2010

 351

Property Name Data Type Description - PCCGiftCard Properties

Method
TxnMethodT

ype
Used internally

Multi Boolean

Flag that indicates whether PCCharge should leave the modem connection
open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

OldCard String

VTEC -- Replace transaction. Set to account number of old card. VLNK --

Balance Merge and Balance Transfer transactions. Set to account number of
old card.

Partial Boolean
For GSAR: Flag indicating whether the transaction is a partial redemption

transaction.

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other

methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS (8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Pin String Used internally for Givex.

Points String For GVEX Points transactions. Set to number of loyalty points for account.

PrintReceipts String

The number of receipts that PCCharge should print for the transaction. This
value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

Processor String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

PromoCode String
Used for GVEX: A code defined by the merchant that affects the calculation
from amount and units to points.

Refund String

Flag that indicates whether to provide the customer a refund when

performing a VTEC Deactivate transaction. Valid Values:

1 – Provide refund

0 – Do not provide refund

ShiftID String Used internally

TI String No longer needed

Ticket String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:
Not all gift processors support ticket numbers.

TimeOut Long

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the Send method is called. It is highly
recommended that integrators review the section Timeouts (see page 59).

Setting the TimeOut value improperly could cause reconciliation issues and

problems such as double-charging a customer‘s account. Note: The TimeOut
properly is only applicable when programming in an asynchronous manner.

TIP String Used for VTEC and VLNK restaurant transactions.

TotalCardNum String
For GSAR multi Issuance, total number of cards being issued at time of

transaction.

Track String

The track II data captured from the magnetic strip of the card. Max Length:

40 characters.
Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

PCCharge Version 5.9.0
Updated 2/8/2010

 352

Property Name Data Type Description - PCCGiftCard Properties

TroutD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will
be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

VirtualGiftCardFlag Boolean
Only used for the processor SVS. 0 - False, 1 - True – Only sent on an

activation to determine if a pin should be returned.

User ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62).

CashierName String Submit Cashier‘s login name.

Password String Submit Cashier‘s password.

SkuLoyalty String

GIVEX ONLY – Integration Only
Pass this tag in order to send product codes, quantities and amounts for

loyalty transactions.

Format:

Single Product Code:
<SKU_LOYALTY>Product Code,Amount,Quantity</SKU_LOYALTY>

Multi-Product Codes (Separated with a semi-colon):

<SKU_LOYALTY>Product Code,Amount,Quantity; Product
Code,Amount,Quantity</SKU_LOYALTY>

 These properties are required to process a gift card redemption or sale transaction.

 Required for VTEC gift card transactions

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators
review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

PCCGiftCard Methods

Method Name
Returned
Value

Description - PCCGiftCard Methods

Cancel None Cancels transaction in progress

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be

triggered (if asynchronous) and the GetErrorDesc method will give a brief

description of the error. Consult the section System Error Codes and
Descriptions for a list of valid error codes and descriptions that will be

returned (see page 148).

GetActivationCount String Returns the number of activations in the current batch

GetActivationTotalAmount String Returns the total dollar amount of activations in the current batch

GetAddPointsCount String Returns the number of AddPoints Transactions in the current batch

GetAddPointsTotalAmount String Returns the total dollar amount of AddPoints transactions in the current
batch

GetAddValueCount String Returns the number of AddValue transactions in the current batch

GetAddValueTotalAmount String Returns the total dollar amount of AddValue transactions in the current

batch

GetAmountDue String Used in partial redemption transactions where only part of the amount was
authorized. Returns the remainder amount that is owed to the merchant.

PCCharge Version 5.9.0
Updated 2/8/2010

 353

Method Name
Returned

Value
Description - PCCGiftCard Methods

GetAuth String

The GetAuth method returns the authorization number for approved
transactions or the reason the transaction was declined (if the processor

provides one). For GVEX Balance transaction: GetAuth will return the

balance remaining on an account. For all other GVEX transactions: GetAuth

will return the transaction‘s reference/error message. For VTEC, returns the
Auth Code. For a VTEC Batch function: use this method to retrieve the

number of sales done that day and the total amounts of sales in the following

format <# of transaction>, <amount>.

GetAuthAmount String
Used in partial redemption transactions where only part of the amount was
authorized. Returns the actual authorized amount.

GetBalanceTransferCount String Returns the number of Balance Transfers in the current batch

GetBalanceTransferTotalAmou

nt
String Returns the total dollar amount of Balance Transfers in the current batch

GetCaptured String

The GetCaptured method returns TRUE if PCCharge returns "CAPTURED" as

the result of the transaction. Otherwise, FALSE will be returned. The

GetCaptured method is used to determine if a transaction that will result

in a monetary transfer (Sale, Credit, Post-Authorization, etc.) is approved or

declined. A ―CAPTURED‖ response indicates that the transaction has been

approved.

GetCashBack String

Used in redemption for remaining balance transactions where the transaction

amount is so close to the balance of the card that the entire balance is

authorized. Returns the remainder that is owed to the customer.

GetCreditCount String Returns the number of credits in the current batch

GetCreditTotalAmount String Returns the total dollar amount of credits in the current batch

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetExp String
Returns the expiration date for processors who issue expiration dates in the
response.

GetGiftCardBalance String Returns the gift card balance.

GetGiftCardType String
Returns type of gift card represented by card property. Consult the section

DevKit Constants for descriptions of values (see page 141).

GetGfitPin String
Only used for the processor SVS. Returned on activation if the virtual gift
card tag is set to ―1‖.

GetMiscMessage String Returns the MiscMessage

GetMerchantNumber String
Returns the merchant number that was specified in the MerchantNumber

property.

GetPointsCount String Returns the number of points transactions in the current batch

GetPointsTotalAmount String Returns the total dollar amount of points transactions in the current batch

GetProcRespCode String The processor response code. Only returned by the processor SVS.

GetRefNumber String

The GetRefNumber returns the Reference field from the .oux file. The

Reference field is used for different purposes (depending on the gift card

processor). For GVEX Register transaction: The first eleven digits of an
account number will be returned. For all VTEC transactions: The account‘s

remaining balance will be returned. For a VTEC batch function: use this

method to retrieve the number of activations done that day and the total
amounts of activations in the following format <# of transaction>,

<amount>.>. For a BPS Redemption transaction, returns the retrieval

reference number.

GetResult String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

PCCharge Version 5.9.0
Updated 2/8/2010

 354

Method Name
Returned

Value
Description - PCCGiftCard Methods

GetRET String

For GVEX: Returns the loyalty balance. For VLNK: Returns the trace number.
For a VTEC batch function: : use this method to retrieve the number of Gift

Transactions Voids performed that day. You can call GetVoidBalance to

determine the total amount of the voids.

GetSaleCount String Returns the number of redemptions in the current batch

GetSaleTotalAmount String Returns the total dollar amount of redemptions in the current batch

GetTI String

The GetTicket method returns the Ticket field from the .oux file. The Ticket

field will return the ticket for all transactions except for a VTEC batch

function. For a VTEC batch function: use this method to retrieve the

number of gift card that has been de-activated that day and the total
amounts of de-activations in the following format <# of transaction>,

<amount>.>.

GetTicket String

The GetTicket method returns the Ticket field from the .oux file. The Ticket

field will return the ticket for all transactions except for a VTEC batch
function. For a VTEC batch function: use this method to retrieve the

number of gift card that has been de-activated that day and the total

amounts of de-activations in the following format <# of transaction>,
<amount>.>.

GetTIM String
Returns the Time of the transaction. This value is not returned by all

processing companies. For VTEC, returns the Amount Due.

GetTipCount String Returns the number of Tip transactions in the current batch

GetTipTotalAmount String Returns the total dollar amount of Tip transactions in the current batch

GetTransDateTime String Returns the transaction date and time when passed back by a processor.

GetTransNum String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

GetTroutD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

GetUpdateData String Used internally

GetVoidBalance String Returns the Void Balance

GetVoidCount String Returns the number of voids in the current batch

GetVoidTotalAmount String Returns the total dollar amount of Voids in the current batch

GetXMLResponse String

The GetXMLResponse method is used to echo the text that is returned in

the response file associated with the transaction. The response (.oux) file

contains XML string data. The text that is retrieved from the .oux file can
be used by integrators that wish to parse the results of the transaction

themselves or for troubleshooting purposes. Refer to the section File

Method (see page 478) for a description of the tags and values that are
returned. Note: This method must be called prior to calling the

DeleteUserFiles method.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process
transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 355

Method Name
Returned

Value
Description - PCCGiftCard Methods

Send None

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and

description, raise the Error event, and terminate processing. Consult the

section System Error Codes and Descriptions for a list of valid errors that
will be returned (see page 148).

The Send method has two optional parameters. The first parameter

indicates whether the Send method will process transactions synchronously
or asynchronously. Note: The object must defined to use events in order to

allow asynchronous communication. Valid Values:

True – process asynchronously (Default)

False – process synchronously

The second parameter indicates what message format will be used for the

request and response files. This parameter may be specified by using a

numerical value (or an enumerated value if the programming language being
used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation

assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send True, 3

Note: The other values that appear in the enumerated list are for internal
use only-- do not attempt to use any values other than the ones listed above.

ValidCardLength Boolean Returns TRUE for card of correct length

ValidDate Boolean
The ValidDate method returns TRUE if the expiration date provided in the

ExpDate property is valid, or FALSE if it is not.

ValidIssuer Boolean Returns TRUE for valid card issuer

VerifyAmount Boolean

The VerifyAmount method returns TRUE if the amount provided in the

Amount property is in a valid format (DDDDDD.CC), or FALSE if it is not. If

FALSE is returned, check the error code to determine the reason for failure.
Consult the section System Error Codes and Descriptions for a list of valid

errors that will be returned (see page 148).

VerifyAmount2 Boolean

The VerifyAmount2 method returns TRUE if the amount provided in the

Amount property is in a valid format (+/-DDDDD.CC). or FALSE if it is not.

If FALSE is returned, check the error code to determine the reason for

failure. Consult the section System Error Codes and Descriptions for a list of
valid error codes and descriptions that will be returned (see page 148). The

difference between VerifyAmount and VerifyAmount2 is that

VerifyAmount2 allows a + or – to be in the first position of the Amount

property. This is needed for Balance Adjustment transactions.

VerifyExpDate Boolean

The VerifyExpDate method returns TRUE if the expiration date provided in

the ExpDate property is correct and in the right format, or FALSE if it is

not. VerifyExpDate calls the ValidDate function to validate the

expiration date. If FALSE is returned, check the error code to determine the

reason for failure. Consult the section System Error Codes and Descriptions
for a list of valid errors that will be returned (see page 148).

VerifyGiftCard Boolean Returns TRUE if card is correctly formatted

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.
Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property
must be set before calling this Method.

VerifyProcessor Boolean Returns TRUE if processor is valid

PCCharge Version 5.9.0
Updated 2/8/2010

 356

Method Name
Returned

Value
Description - PCCGiftCard Methods

GetPreAuthCount String
Only for GAPI, this returns the total number of gift card pre-auth
transactions processed that day.

GetPreAuthAmount String
Only for GAPI, this returns the total amount of gift card pre-auth transactions

processed that day.

GetPostAuthCount String
Only for GAPI, this returns the total number of gift card post-auth

transactions processed that day.

GetPostAuthAmount String
Only for GAPI, this returns the total amount of gift card post-auth

transactions processed that day.

GetIssuanceCount String Only for GAPI, this returns the total number of gift cards issued that day.

GetIssuanceTotalAmount String Only for GAPI, returns the total amount of the gift cards issued that day.

GetDeactivateCount String Only for GAPI, this returns how many gift cards where deactivated that day.

GetDeactivateTotalAmount String
Only for GAPI, this returns the total amount of gift card deactivations that
day.

GetBalanceAdjustCount String
Only for GAPI, this returns the number of gift cards that were balance

adjusted that day.

GetBalanceAdjustTotalAmount String
Only for GAPI, this returns the total amount of balance adjustments on gift
cards that day.

GetBalanceMergeCount String
Only for GAPI, this returns the total number of the gift cards that were

balance merged that day.

GetBalanceMergeTotalAmount String
Only for GAPI, this returns the total amount of gift card balance merges that

day.

GetReportLostStolenCount String Only for GAPI, returns the total reported stolen or lost gift cards that day.

GetReportLostStolenTotalAmo

unt
String

Only for GAPI, returns the total amount of all stolen or reported lost gift

cards that day.

GetCashoutTotalAmount String
Only for GAPI, returns the total amount of all cashout transactions processed

that day.

GetCashoutCount String
Only for GAPI, returns the total number of the cashout transactions
processed that day.

GetReactivateCount String
Only for GAPI, returns the total number of gift cards that have been

reactivated that day.

GetReactivateTotalAmount String
Only for GAPI, the total amount of all gift cards that have been reactivated
that day.

PCCGiftCard Events

Event Name Description - PCCGiftCard Events

Error

The Error event is fired any time an error occurs in the class. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the
section System Error Codes and Descriptions for a list of valid errors that will be returned (see page

148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has

processed the transaction successfully and has placed a file with the extension of .oux in the

PCCharge directory. The name of the .oux file will be what was set in the User property of the

transaction request. Call the GetResult method to determine whether or not the transaction was

approved. A list of valid results can be found in the Transaction Result Constants section (see page
154).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send

method.

PCCharge Version 5.9.0
Updated 2/8/2010

 357

PccBatch Class

The PccBatch class is used to perform inquire and close operations on Host based merchant accounts.

To perform a batch operation, follow the procedure below:

1. Assign the appropriate values to at least the minimum set of properties (marked with a in the
PccBatch Properties table).

2. Call the BatchFunction method to initiate the operation. BatchFunction will respond when

the operation is complete.

3. Grab values from the various return properties. Response contains a string that indicates how the

operation was resolved.

PccBatch Properties

Property Name Data Type Description - PccBatch Properties

Action Integer
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

ActiveID* Integer

Returns the Index number of the merchant number associated with the batch

operation. For example, the first Merchant number that is set up in
PCCharge is assigned the index of ―1‖ .

AmexAmount* String Returns the total dollar amount of Amex transactions in current batch

AmexAuthSettlement Boolean Amex Auth Settlement flag

AmexCount* String Returns Number of Amex transactions in current batch

Balance* String Returns the batch balance (the sum of all transactions in the batch)

BatchCloseType Byte

Flag that determines what type of batch close will occur. This flag only
supported by FDMS Atlanta and Fifth-Third when using action code 30 or 31

Valid values:

1 – Standard End of Day Batch Close (Default)

2 – Shift Close
3 – Fifth-Third Terminal Based Batch Close of Debit, EBT, or Gift

BatchDate* String Returns the date batch was closed (not supported by all processors)

BatchNumber* String Returns the batch number for the current batch

CIC* String Returns the compliance indicator code

DebitAmount* String Returns the Debit Amount

DebitCount* String Returns the Debit Count

DebitRetAmount* String Returns the Debit Returns Amount

DebitRetCount* String Returns the Debit Returns Count

EBTAmount* String Returns the EBT Amount

EBTCount* String Returns the EBT Count

HangUpDelay Integer

This value specifies if the modem should be hung up on subsequent calls to

the BatchFunction method. The integer value passed in will cause a delay
of that amount, in seconds, after the modem hangup command is called. This

allows time for the modem to hangup before batch functions are allowed to

call out. Setting the value to '0', the default, will prevent the modem from
being hung up.

ItemCount* String Returns the total number of transactions in the current batch

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property
must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

PCCharge Version 5.9.0
Updated 2/8/2010

 358

Property Name Data Type Description - PccBatch Properties

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the BatchFunction method.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Processor String

The code for the processing company that will be used when performing
batch operations. This value can be no more than four characters and must

be capitalized. The processor specified in this property must be set up with

a valid merchant number in PCCharge. A list of valid processor codes are
listed in the Processing Company Codes section (see page 150).

PurchaseAmount* String Returns the total dollar amount of all purchases (sales) in the batch.

PurchaseCount* String Returns the total number of all purchases (sales) in the batch.

Response* String Response string returned by processor.

ResultCode* Byte

Returns the result of the batch operation. Valid Values:

2 – Batch Closed/Settled

6 – Batch Declined

8 – Batch Deferred

ReturnAmount* String Returns the total dollar amount of all returns (credits) in the batch.

ReturnCount* String Returns the total number of all returns (credits) in the batch.

Status* String Status of current batch.

SplitProcessor String
Only used when settling the processor CITI for private label transactions. Set

this property to the main credit card processor ID code being used.

Store* String Store number associated with merchant account.

Terminal* String Terminal ID associated with merchant account.

TotalsType* Byte Totals Type

VisaMCAmount* String Total amount of VISA/MasterCard transactions.

VisaMCCount* String Number of VISA/MasterCard transactions.

VoidAmount* String Returns the total dollar amount of all void transactions in the batch.

VoidCount* String Returns the total number of all void transactions in the batch.

 These properties are required to process a transaction.

* The processor returns these values.

PccBatch Methods

Method Name
Returned
Value

Description - PccBatch Methods

AmexBatch Boolean Used internally

BancTecBatch Boolean Used internally

BatchFunction Boolean Call this method to start batch operation

BPASBatch Boolean Used internally

BPASTCPBatchCall None Used internally

Cancel None Cancels the current batch operation

CCRDBatch Boolean Used internally

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during use of various methods. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

PCCharge Version 5.9.0
Updated 2/8/2010

 359

PCCharge Version 5.9.0
Updated 2/8/2010

 360

PccSettle Class

This class is used for settling batches with Terminal based systems. The batch must be settled regularly
(at least once per day, ideally) to ensure that the funds from transactions are deposited before the
authorizations expire.

PccSettle Properties

Property Name Data Type Description - PccSettle Properties

ActiveID* Integer

Returns the Index number of the merchant number associated with the batch

operation. For example, the first Merchant number that is set up in
PCCharge is assigned the index of ―1‖ .

AmexAuthSettlement Boolean Amex Auth Settlement Flag

Balance* String Returns the batch balance (the sum of all transactions in the batch)

Batches* String Returns the number of batches settled

BatchNumber* String Returns the batch number.

Error_Record* Integer
Returns the index number of the transaction that cannot settle if an error

occurs settling the batch

Indeterminate* Boolean Returns TRUE if the batch fails and returns an indeterminate response.

ItemCount* String Returns the number of items in current batch

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the
Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MessageCount* Integer Returns the total number of messages sent to the processor

NoFile* Boolean Returns TRUE if PCCharge has no record of transactions to settle

NoSettle* Boolean Returns TRUE if the processor has no record of transactions to settle

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the SettleBatch method.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a "\".

Processor String

The code for the processing company that will be used when performing

batch operations. This value can be no more than four characters and must

be capitalized. The processor specified in this property must be set up with
a valid merchant number in PCCharge. A list of valid processor codes are

listed in the Processing Company Codes section (see page 150).

record Integer Used internally

ResultCode Byte

Returns the result of the batch operation. Valid Values:

2 – Batch Closed/Settled

6 – Batch Declined

8 – Batch Deferred

SettleNumber* String Returns the Settlement number from the processor

SettleResponse* String Returns the Response from the processor

Status* String Returns the Status of the batch

TCount* String Returns the Number of transactions in current batch

 These properties are required to process a transaction.

* The processor returns these values.

PCCharge Version 5.9.0
Updated 2/8/2010

 361

PccSettle Methods

Method Name
Returned

Value
Description - PccSettle Methods

Cancel None Cancels the current batch operation

Clear None The Clear method will clear the values in all properties and methods.

ClearResponse None
The Clear method will clear the values in all response related properties
and methods.

CloseAmexSettleFile Boolean Used internally

CreateAmexSettleFile Boolean Used internally

CreateCESSettleFile None Used internally

CreateFDCNSettleFile None Used internally

CreateFDCSettleFile None Used internally

CreateGSARSettleFile None Used internally

CreateNBSettleFile None Used internally

CreateNDCSettleFile None Used internally

CreateNOVASettleFile None Used internally

CreateNPCSettleFile None Used internally

CreateNVUSSettleFile None Used internally

CreateTELMSettleFile None Used internally

CreateVISAKSettleFile None Used internally

DecryptSettleFile Boolean Used internally

EncryptAmexArchiveBatches Boolean Used internally

EncryptSettleFile Boolean Used internally

GetAmexBatchTotal Boolean

Calculates the Amex Batch total. The ItemCount and Balance properties

will contain the returned data. TRUE is returned if the operation is

successful, FALSE otherwise.

GetBatchTotal Boolean

Initiates an inquiry; returns TRUE if the inquiry was successful. Use this to
determine how many batches are waiting to be settled. If multiple batches,

a response will be returned for each batch. A loop must be initiated to read

the response from each batch.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was
encountered during use of various methods. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that
was encountered during the use of the various methods. Consult the section

System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

SettleAmex Boolean
Initiates AMEX direct settlement; returns TRUE if the settlement was
successful.

SettleBatch Boolean Initiates a settlement; returns TRUE if the settlement was successful

UpdateSettleDB None Used internally

WriteAmexSettleRecord Boolean Used internally

WriteCESSettleDB None Used internally

WriteFDCNSettleDB None Used internally

WriteFDCSettleDB None Used internally

WriteGSARSettleDB None Used internally

WriteNBSettleDB None Used internally

WriteNDCSettleDB None Used internally

WriteNOVASettleDB None Used internally

WriteNPCSettleDB None Used internally

WriteNVUSSettleDB None Used internally

WriteTELMSettleDB None Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 362

Method Name
Returned

Value
Description - PccSettle Methods

WriteVisaKSettleDB None Used internally

Note: In the event there are multiple batches waiting to be settled in one settlement, the integrated
application will need to be designed to loop through the settlement response to retrieve the response
for each batch.

PCCharge Version 5.9.0
Updated 2/8/2010

 363

PccSettleGift Class

This class is used for settling batches with Gift Card Processors. The batch must be settled regularly (at
least once per day, ideally) to ensure that the funds from transactions are deposited before the
authorizations expire.

PccSettleGift Properties

Property Name Data Type Description - PccSettleGift Properties

ActiveID* Integer

Returns the Index number of the merchant number associated with the batch

operation. For example, the first Merchant number that is set up in
PCCharge is assigned the index of ―1‖ .

Balance* String Returns the batch balance (the sum of all transactions in the batch)

Batches* String Returns the number of batches settled

Error_Record* Integer
Returns the index number of the transaction that cannot settle if an error

occurs settling the batch

ItemCount* String Returns the number of items in current batch

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the
Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

MessageCount* Integer Returns the total number of messages sent to the processor

NoFile* Boolean Returns TRUE if PCCharge has no record of transactions to settle

NoSettle* Boolean Returns TRUE if the processor has no record of transactions to settle

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the SettleBatch method.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters

maximum. Must end with a "\".

Processor String

The code for the processing company that will be used when performing

batch operations. This value can be no more than four characters and must
be capitalized. The processor specified in this property must be set up with

a valid merchant number in PCCharge. A list of valid processor codes are

listed in the Processing Company Codes section (see page 150).

record Integer Used internally

SettleNumber* String Returns the Settlement number from the processor

SettleResponse* String Returns the Response from the processor

Status* String Returns the Status of the batch

TCount* Integer Returns the Number of transactions in current batch

 These properties are required to process a transaction.

* The processor returns these values.

PccSettleGift Methods

Method Name
Returned

Value
Description - PccSettleGift Methods

Cancel None Cancels the current batch operation

Clear None The Clear method will clear the values in all properties and methods.

GetBatchTotal Boolean Initiates an inquiry; returns TRUE if the inquiry was successful

PCCharge Version 5.9.0
Updated 2/8/2010

 364

Method Name
Returned

Value
Description - PccSettleGift Methods

GetErrorCode Long

The GetErrorCode method returns an error code if an error was
encountered during use of various methods. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetGiftTIDSeqNumber Integer

This method returns the index of the credit card merchant number that

relates to a gift card merchant number. Two parameters, the gift card
merchant number and the gift card processor code must be passed when

calling this method.

SettleBatch Boolean Initiates a settlement; returns TRUE if the settlement was successful

PCCharge Version 5.9.0
Updated 2/8/2010

 365

PccPinPad Class

The PccPinPad class allows integration to PINpad devices connected to the serial port.

This is a Multi Use class.

The PccPinPad class provides the functionality to Initialize a PINpad and to retrieve the PIN from the
cardholder. The PINpad must be initialized once prior to retrieving the PIN. If the PINpad‘s power is
cycled, it must be re-initialized. If the object is destroyed and then instantiated, the PINpad must be
re-initialized.

PccPinPad Properties

Property Name Data Type Description - PccPinPad Properties

AccType GPSAccType

The customer‘s bank account type used when processing the transaction.

1 or ENUM_ACC_CHEQ - Chequing

2 or ENUM_ACC_SAV – Savings

Note: When populating this property to build the initial Interac request

string, the customer‘s bank account type will not be known by the merchant
(the customer will enter it once prompted). This value must be hard-coded.

It is suggested to hard-code this value to ―1‖ if most of the merchant‘s

customers use their checking accounts when purchasing products or ―2‖ if
most of the merchant‘s customers use their saving account when purchasing

products.

Note: A new MAC value must be requested from the PINpad if the account

chosen by the merchant differs from the account chosen by the customer.

Set this property to the account chosen by the customer, call the

BuildInteracRequest method again and use the RequestMAC method in

the PinSC5000 class to request a new MAC value from the PINpad.

Action String

Set this property to the type of transaction being processed. This should be

set to the same transaction type specified in the TransNameID property.

0 – Purchase (default)

4 – Refund

AllDataReceived Variant Indicates whether all data has been received

Amount** String

This amount displayed to customer on the PINpad for approval

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.
Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with
leading zeroes.

Example: Incorrect format ―0001.00‖.

Argements String N/A

Baud* Variant Baud rate Example: ―1200‖

Card** String Debit card number

Command String N/A

DataBits* String Databits Example: "7"

DataWaiting Variant N/A

Device* Variant
The type of PINpad to be used. Types of PINpads are listed below. Example:
―1‖

PCCharge Version 5.9.0
Updated 2/8/2010

 366

Property Name Data Type Description - PccPinPad Properties

ExpDate String N/A

Gratuity String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. This is the Gratuity Amount of the transaction
returned by the PINpad.

IdleMessage String

The default message for the PINpad that is connected to the machine that

PccPinPad will be communicating with. For example, if this is set to

"Welcome", "Welcome" will appear on the screen at times of inactivity.

IncomingData String N/A

KeyManagement*
PinPadMana

gement
Type of encryption method to be used.

KeySerialNumber String The Key Serial Number of the transaction

LangCode
GPSLangCod

e

Language Code used when communicating with and displaying messages on
the PINpad. Verifone SC5000 only

Valid Values:

0 – English (default)

1 – French

LastChar Variant N/A

MACData String MAC data from the PINpad. Verifone SC5000 only.

MasterKey Integer

The Master Key for Master Session encryption. Not all processors who do

Master Session encryption will have a Master Key. Set MasterKey to "0" if no
Master Key is present.

member String Name of cardholder

OLEPinState Byte
This value must be set to ―1‖ in order to communicate with the PINpad

properly

Parity* String Parity setting for PINpad. ("E" for even, "O" for odd, "N" for none)

Pin String The encrypted PIN entered by user.

Port* String Number of the COM port to be used (Example: "1" used for COM port 1)

ReceivingData Variant Indicates whether device is in process of receiving data

Response String Response from processor

SerialNumber String Chip Serial Number from the PINpad.

StartTime Long N/A

State
PinPadSta

te
States of PINpads are listed below

TermID String

Set this property to the Chip Serial Number of the PINpad. Use the

GetSerialBlock method in the PinSC5000 class to acquire the Chip Serial

Number of the PINpad. Verifone SC5000 only.

TimeOut Long

Length of time after a request for PIN before PCCharge times out. It is highly
recommended that integrators review the section Timeouts (see page 59).

Note: The TimeOut properly is only applicable when programming in an
asynchronous manner.

TipType Integer

Determines if the PINpad will prompt the customer to enter a tip amount

and also determines if the PINpad will display a ―suggested‖ tip amount prior

to prompting for the tip amount.
Valid Values:

0 – The customer is not prompted to enter a tip amount (Default)

1 – The customer is prompted to enter a tip amount.

2 through 99 – The PINpad will calculate a ―suggested‖ tip amount and
display it on the PINpad prior to prompting the customer for the tip amount.

The integer value passed in represents the percentage that will be used to

calculate the tip. For example, 20 would calculate a 20% tip amount. The

customer would see this ―suggested‖ tip amount and would then be
prompted to key in the actual tip amount.

TrackData String Raw swiped track data from card

WorkingKey String Property for future use

* These properties must be set before Initialize can be called.

** These properties must be set before GetPin can be called.

PCCharge Version 5.9.0
Updated 2/8/2010

 367

PccPinPad Methods

Method Name
Returned

Value
Description - PccPinPad Methods

AtallaAsciiString String No longer supported

AtallaComm Boolean No longer supported

AtallaIO Boolean No longer supported

Cancel Boolean Returns TRUE if transaction was canceled

ClearData Boolean Clears all data from device

ClearPort Boolean Clears PINpad buffer

ClosePort Boolean Releases COM port to which PINpad is connected

CreatPinPadFile None Used internally

GetPin Boolean

The GetPin method initiates the PIN entry prompt on the PINpad. If

successful, TRUE will be returned. Once TRUE is returned, the PIN will be

returned in the .Pin property and the Key Serial Number will be returned in

the .KeySerialNumber property.

Initialize Boolean Initializes PINpad

LoadKey None N/A

MAC Boolean Perform MAC with the PINpad

OpenPort Boolean Captures COM port to which PINpad is connected

ParseData Boolean Parse swipe data

ReceiveData Boolean N/A

Send None Not used. Use GetPin to retrieve PIN from PINpad

The following is a list of available PINpad types supported.

PinPadDevice Properties

Property Name Data Type Description - PinPadDevice Properties

ppdIVI_CheckMate_eNTouch100

0
Enum Value = 10

ppdIVICheckmate_2100 Enum Value = 5

ppdIVIeNCrypt_BMON Enum Value = 7

ppdIVIPOSPad Enum Value = 6

ppdIVISentinel Enum Value = 3

PPDNone Enum Value = 0

ppdPenWare_3100 Enum Value = 8

ppdVerifone_101 Enum Value = 1

PPDVerifone_2000 Enum Value = 2

ppdVerifone_Everest Enum Value = 4

ppdVerifone_SC500_C Enum Value = 9

ppdVerifone_3730 Enum Value = 12

The following is a list of all available PINpad states.

PinPadState Properties

Property Name Data Type Description - PinPadState Properties

PPSCancel Enum Value = 2

PPSIdle Enum Value = 0

PPSProcess Enum Value = 1

PCCharge Version 5.9.0
Updated 2/8/2010

 368

PccSC550 Class

PccSC550 Class Properties

Property Name Data Type Description - PccSC550 Class Properties

AccType GPSAccType

The customer‘s bank account type used when processing the transaction.

1 or ENUM_ACC_CHEQ - Chequing

2 or ENUM_ACC_SAV – Savings
Note: When populating this property to build the initial Interac request

string, the customer‘s bank account type will not be known by the merchant
(the customer will enter it once prompted). This value must be hard-coded.

It is suggested to hard-code this value to ―1‖ if most of the merchant‘s

customers use their checking accounts when purchasing products or ―2‖ if
most of the merchant‘s customers use their saving account when purchasing

products.

Note: A new MAC value must be requested from the PINpad if the account
chosen by the merchant differs from the account chosen by the customer.

Use the RequireReMac property in the PinSC5000 class to determine if
ReMACing must occur.

Action String Used internally

Amount String

Set this property to the Amount of the transaction to be processed. This

property should not contain any decimals or commas. Example: to specify a

$1.00 transaction, set this property to “100”

Baud Variant
Baud Rate used to communicate with the PINpad.

Default Value: ―9600‖

ChipSerialNum String

This property will contain the Chip Serial Number of the PINpad. This field is

populated by running the GetChipSerialNum method. The Chip Serial

Number is passed as a parameter to the Debit classes‘

GetPOSSequenceNumber method.

DataBits Variant
DataBits used to communicate with the PINpad.

Default Value: ―8‖

DisplayAmount String

Set this property to the amount of the transaction. The amount specified is

displayed to the customer for confirmation on the PINpad. This amount
should include the decimal point and trailing zeros, if applicable. Example:

to specify a $1.00 transaction, set this property to “1.00”

LanguageCode
GPSLangCod

e

Language Code used when communicating with and displaying messages on
the PINpad.

Valid Values:

0 – English (default)

1 – French

MACBlock String
After the ParseResponseData method has been called, this property will

contain the MAC block information that was returned from the PINpad.

Parity Variant

Parity used to communicate with the PINpad.
Valid Values:

E – even

O – odd

N – None (default)

PINBlock String
After the ParseResponseData method has been called, this property will
contain the customer‘s encrypted PIN that was returned from the PINpad.

Port String
Port Number to be used to communicate with PINpad.

Default Value: ―COM1‖

SC550Form Object Used internally

SequenceNum String

The POS Sequence number. Set this property to the value that was returned

by PCCharge when calling the GetPOSSequenceNumber method in the

Debit.OCX control.

TermID String

Set this property to the Chip Serial Number of the PINpad. Use the

GetSerialBlock method in the PinSC550 class to acquire the Chip Serial
Number of the PINpad.

PCCharge Version 5.9.0
Updated 2/8/2010

 369

Property Name Data Type Description - PccSC550 Class Properties

TipAmount String
After the ParseResponseData method has been called, this property will
contain the optional customer-specified tip amount. If this property is

populated with a value greater than 0, a ReMAC must occur.

TipType Integer

Determines if the PINpad will prompt the customer to enter a tip amount and

also determines if the PINpad will display a ―suggested‖ tip amount prior to
prompting for the tip amount.

Valid Values:

0 – The customer is not prompted to enter a tip amount (Default)

1 – The customer is prompted to enter a tip amount.

2 through 99 – The PINpad will calculate a ―suggested‖ tip amount and

display it on the PINpad prior to prompting the customer for the tip amount.
The integer value passed in represents the percentage that will be used to

calculate the tip. For example, 20 would calculate a 20% tip amount. The
customer would see this ―suggested‖ tip amount and would then be

prompted to key in the actual tip amount.

TrackII String
Set this property to the track II data from the magnetic stripe of the card.

For example: ;1234123412341234=08121234123412340001?

TransCode
GPSTransCo
de

Set this property to the type of transaction being processed. This should be

set to the same transaction type specified in the TransNameID property.

0 or ENUM_TCODE_PURCH_NORM – Purchase (default)

4 or ENUM_TCODE_REFUND – Refund

TransNameID GPSTransID

Set this property to the type of transaction being processed. The property

indicates to the PINpad to displays the type of transaction being processed to
the customer. This should be set to the same transaction type specified in

the TransCode property.
Valid Values:

0 or ENUM_TID_PURCH – Displays ―PURCHASE‖ (default)

1 or ENUM_TID_REFUND – Displays ―REFUND‖

 These properties must be set prior to calling the BuildInteracRequest method.

 These properties will be set after the ParseResponseData method completes successfully.

PccSC550 Class Methods

Property Name
Returned
Value

Description - PccSC550 Class Methods

BuildInteracReqString String

Builds and returns the Interac request string that will be sent to the PINpad.

The properties in the SC550.clsInteracReq Class Properties table that are

marked with a must be set prior to calling this method.

GetChipSerialNum Boolean
Obtains the Chip Serial Number from the PINpad. This method populates the

ChipSerialNum property with the PINpad‘s Chip Serial Number.

GetPin Boolean

Gets the PIN from the PINpad. This will prompt the user to enter his/her PIN.

GetPin will then return the encrypted PIN. GetPin will return nothing if a
timeout or cancel occurs.

Initialize Boolean
Initializes the PINpad. Returns TRUE if the initialization was successful,

FALSE if not. Initialize has an optional parameter than can be passed in that

will allow checking of the com port.

KeyChangeRequest None Requests a key change from the PINpad.

PCCharge Version 5.9.0
Updated 2/8/2010

 370

PccBin Class

This functions in this class will return information that indicates if a credit card is a Commercial Card,
and what type of Commercial Card it is. See the section Commercial Card Transactions (see page 94)
for more information.

This is a Multi Use class.

PccBin Properties

Property Name Data Type Description - PccBin Properties

Canceled Boolean Used internally

CommercialCard Boolean

To test if the card is a Level II card (Business, Purchase, Corporate, or Fleet),

pass the card number to this function. The function will return TRUE if the

card‘s BIN range appears in the Bin.mdb database that resides in the

PCCharge directory. FALSE will be returned if it doesn‘t. If TRUE is

returned, check CommercialCardType to determine what type of Level II

card it is.

CommercialCardType String

This property indicates the card type. After calling the CommercialCard

function, the CommercialCardType property will be populated with one of
the following values:

B - Business

P,L,G - Purchase

C - Corporate

F - Fleet

N - not a Level II card

If processing a commercial card, the CmrclCardFlag property in the

PccCharge class should be populated with this value prior to submitting the
transaction.

Index Integer No longer supported

MC Collection No longer supported

Other Collection No longer supported

VS Collection No longer supported

PccBin Methods

Method Name
Returned

Value
Description - PccBin Methods

Load Boolean No longer supported

Save Boolean No longer supported

Show Boolean No longer supported

PCCharge Version 5.9.0
Updated 2/8/2010

 371

Reporting

The PccCharge class may be used by integrators to submit report requests. A report request can have
PCCharge print a report to it‘s default report printer or have PCCharge generate a file containing the
report output. If generating a file, the PCCharge reporting interface supports three different file
types:

1. Portable Document Format (.pdf)
2. Rich Text Files (.rtf)
3. Standard Text files (.txt)

Note: The reporting interface cannot be configured to send reports directly to the screen.

The following outlines the properties used for submitting report requests to PCCharge with the
PccCharge class. The properties in PccCharge that are not documented below should be left

blank when submitting report requests.

Property Data Type Description - PccCharge Class Reporting Properties

Action Long

The action code that identifies what type of report will be requested. Valid

Values: 81-84. Example: If running a credit card detail report, set the action

code to ―81‖. Consult the section DevKit Constants for a list of valid values
(see page 141).

Card String

User name filter. If a valid user name is set in the Card property, the
report will be filtered by that user name. The report returned will consist of

only those transactions processed by the user name specified. Example:

"User1". If this property is left blank, the report will show transactions
processed by all users.

Manual Long

Result filter. Use this filter to create a report consisting of only those

transactions with the result specified.

Valid Values: 0 = all (default), 1 = approved, 2 = declined Example: 1

member String

Ending Date/Time filter. Specifies the end date and end time of the report.
Format: Date: MM/DD/YY Time: HH:MM:SS PM. When used in conjunction

with Street; will create a report consisting of only those transactions
processed between the start and end date/time specified (inclusive). If an

end date is not specified, today's date is assumed. If an end time is not

specified, 11:59:59 PM is assumed. The end date can be passed without the

end time. However, the end time cannot be passed without the end date.

Examples: "07/06/05 06:00:00 PM" or ―07/06/05‖

MerchantNumber String

Merchant Number filter. Set this property to filter the report by the
merchant number specified. Setting this property will generate a report

consisting of only those transactions processed via the merchant number

specified. To generate a report that includes all merchant numbers in

PCCharge, set this property to "ALL― or leave blank. Example:
"99999999911"

Path String

The path to the directory in which the PCCharge executable resides. This

property must be set prior to calling the Send, PccSysExists, and other

methods that require accessing the PCCharge directory.

Example: C:\Program Files\PCCW\

 or C:\Program Files\Active-Charge\

Path Formats: UNC, MS-DOS(8 Characters) and Long. 100 characters
maximum. Must end with a "\".

PeriodicPayment String

Report Output setting. Determines if the report will be printed by PCCharge

or written to a file. Valid Values: "0" = print to default printer specified in

PCCharge (default). "1" = print to file using filename specified in TransID

and path specified in TRACK.

PCCharge Version 5.9.0
Updated 2/8/2010

 372

Property Data Type Description - PccCharge Class Reporting Properties

Street String

Starting Date/Time Filter (Optional) Specifies the start date and start time

of the report. Format: Date: MM/DD/YY Time: HH:MM:SS PM. Use to create
a report consisting of only those transactions processed on or after the date

specified. If a start date is not specified, today's date is assumed. If a start

time is not specified, 12:00:00 AM is assumed. The start date can be passed

without the start time. However, the start time cannot be passed without
the start date.

Examples: "03/04/05 09:00:00 AM" or ―03/04/05‖

TimeOut Long

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the Send method is called. It is highly
recommended that integrators review the section Timeouts (see page 59).

Note: The TimeOut properly is only applicable when programming in an
asynchronous manner.

Track String

Destination Directory for Report File. Specifies the destination directory

where the report file will be generated by PCCharge (if PeriodicPayment

is set to "1").

Example: ―C:\My Documents\PCCReports\‖
Path Formats: UNC, MS-DOS(8 Characters) and Long. Max Length: 40

characters (if the Destination Directory is longer than 40 characters, use

CustCode for the additional characters. Must end with a "\" unless the

directory name will be continued in the CustCode property.

Note: If running in a Client/Server environment, this property is the path
from the server running PCCharge, not the client. For example, if a client

submitted a report request that specified ―C:\― as the destination directory,
the report would be written to the local hard drive of the server running

PCCharge, not to the client‘s hard drive.

CustCode String

Destination Directory for Report File (continued). Continuation of the

destination directory (if the directory name is greater than 40 characters).

Max Length: 25 characters. Must end with a "\"

TRANSID String

Report File name/Report File Type. Specifies the filename and extension of

the report file generated by PCCharge (if PeriodicPayment is set to "1").
Also determines what file type will be used when PCCharge generates the

report. To specify the file type, set the extension to one of the following:

.pdf – Create the report file in the Portable Document Format. Ex.

Report.pdf

.rtf – Create the report file in Rich Text. Ex. Report.rtf

.txt – Create a report file in flat text. Ex. Report.txt Default: .txt (If an

extension other than the ones listed is passed, the report will be returned as

flat text and a .txt extension will be added to the filename)

User String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62).

 These properties are required to submit a report request.

The following outlines the methods used to process report requests. The methods in PccCharge

that are not documented below will not be used when processing report requests.

Method
Returned
Value

Description - PccCharge Class Reporting Methods

Cancel None

The Cancel method attempts to cancel the transaction in progress. Calling

the Cancel method does not guarantee that the transaction will be
canceled; it simply attempts to cancel the transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 373

Method
Returned

Value
Description - PccCharge Class Reporting Methods

DeleteUserFiles None

The DeleteUserFiles method attempts to delete all request and response
files associated with the transaction. It will delete the files based on the

value set in the User property. The DeleteUserFiles method should be
called after the results have been retrieved from the transaction. If an error

occurs while attempting to delete the files, the Error event will be triggered

(if asynchronous) and the GetErrorDesc method will give a brief description
of the error. Consult the section System Error Codes and Descriptions for a

list of valid error codes and descriptions that will be returned (see page 148).

GetAuth String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

GetErrorCode Long

The GetErrorCode method returns an error code if an error was

encountered during the use of various methods such as the Send, Cancel,

DeleteUserFiles, and PccSysExists. Consult the section System Error
Codes and Descriptions for a list of valid errors that will be returned (see

page 148).

GetErrorDesc String

The GetErrorDesc method returns a string representation of the error that

was encountered during the use of the various methods. Consult the section
System Error Codes and Descriptions for a list of valid errors that will be

returned (see page 148).

GetResult String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of
valid values and descriptions.

PccSysExists Boolean

The PccSysExists method is used to determine if PCCharge is available to

process transactions. If PccSysExists returns TRUE, the file SYS.PCC
exists in the PCCharge directory and PCCharge is not available to process

transactions. TRUE usually indicates that PCCharge is either not running, is
performing a batch or database function, or is in an error state. The

GetErrorCode and GetErrorDesc methods will provide information as to
why the file exists. Consult the section System Error Codes and Descriptions

for a list of valid error codes that will be returned (see page 148). If

PccSysExists returns FALSE, then PCCharge is ready to process

transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 374

Method
Returned

Value
Description - PccCharge Class Reporting Methods

Send Integer

The Send method creates a text file containing the transaction request and

places the file in the PCCharge directory. The Send method will check the
action code specified and perform the transaction type indicated. If an error

occurs while Send executes, the class will set the error code and description,

raise the Error event, and terminate processing. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

The Send method has two optional parameters. The first parameter

indicates whether the Send method will process transactions synchronously or
asynchronously. Note: The object must defined to use events in order to

allow asynchronous communication. Valid Values:

True – process asynchronously (Default)

False – process synchronously

The second parameter indicates what message format will be used for the

request and response files. This parameter may be specified by using a

numerical value (or an enumerated value if the programming language being
used supports enumerated values).

IMPORTANT NOTE: It is highly recommended that the XML message format

parameter is set when calling the Send method. All DevKit documentation

assumes that the XML message format parameter has been set. (The legacy
INP message format is selected by default for backwards compatibility

reasons.)

Valid values:

3 (TTYPE_XML) – XML message format – (RECOMMENDED)

Example: Send True, 3

Note: The other values that appear in the enumerated list are for internal use
only-- do not attempt to use any values other than the ones listed above.

VerifyMerchantNumber Boolean

The VerifyMerchantNumber method returns TRUE if the merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.
Specifically, this method checks for the merchant number in the file

TID.PCC, which is located in the PCCharge directory. The Path property
must be set before calling this Method.

PccCharge Events

Event Description - PccCharge Class Events

Error
The Error event is fired any time an error occurs in the class. Once an Error event has fired, call

GetErrorCode and GetErrorDesc to determine what kind of error has occurred. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned (see page 148).

Finish

The Finish event will fire when the transaction has been completed. This means that PCCharge has processed

the transaction successfully and has placed a file with the extension of .oux in the PCCharge directory. The name

of the .oux file will be what was set in the User property of the transaction request. Call the GetResult method
to determine whether or not the transaction was approved. A list of valid results can be found in the DevKit

Constants section (see page 141).

Note: When doing asynchronous transactions in an event-driven programming model, it is important to place all result or error

routines in either the Finish or Error events. Do not place any code that uses the .get methods after invoking the Send
method.

PCCharge Version 5.9.0
Updated 2/8/2010

 375

Utility Related Classes

OS

The OS object contains information about the operating system on the local machine.

This is a Multi Use class.

OS Properties

Property Name Data Type Description - OS Properties

BuildNumber Long
Returns the build number of the operating system on the machine that PCCharge
is installed

CSDVersion String
Returns the CSD Version (Service Pack level) of the operating system on the on

machine that PCCharge is installed

MajorVersion Long
Returns the Major version of the operating system on the machine that PCCharge
is installed

MinorVersion Long
Returns the Minor version of the operating system on the machine that PCCharge

is installed

OSVersion EOS_VERSION
Returns the version of the operating system on the machine that PCCharge is

installed

Platform String
Returns the Platform of the operating system on the machine that PCCharge is

installed

PlatformID Long
Returns the Platform ID of the operating system on the machine that PCCharge is

installed

Version String
Returns the full version information of the operating system on the machine that
PCCharge is installed

Win2000 Boolean Indicates whether operating system of the local machine is Windows 2000.

Win2003 Boolean Indicates whether operating system of the local machine is Windows 2003.

Win95 Boolean Indicates whether operating system of the local machine is Windows 95.

Win98 Boolean Indicates whether operating system of the local machine is Windows 98.

WinME Boolean
Indicates whether operating system of the local machine is Windows ME or was
derived from Windows ME

WinNT Boolean
Indicates whether operating system of the local machine is Windows NT or was

derived from Windows NT (Example: Windows 2000)

WinXP Boolean
Indicates whether operating system of the local machine is Windows XP or was
derived from Windows XP

PCCharge Version 5.9.0
Updated 2/8/2010

 376

PccActiveCharge

This class contains information about the current instance of PCCharge.

This is a Multi Use class.

PccActiveCharge Properties

Property Name Data Type Description - PccActiveCharge Properties

Check Collection Contains merchant check processing information

CompanyName Variant Merchant company information

Credit Collection Contains merchant credit card processing information

CSZ Variant This value is read-only

Debit Collection Contains merchant debit processing information

EBT Collection Contains merchant EBT processing information

EmailHelp Variant Private label information specified in sys.cfg

Fax Variant Private label information specified in sys.cfg

GiftCard Collection Contains merchant gift card processing information

HndUI Long
This value is read-only. Contains the handle for the main UI window. If null, the

UI is not loaded. In that case, set ShowAcUI to "1", then re-read HndUI.

License Variant Private label information specified in sys.cfg

PccModem PccModem Merchant modem information

PccUtilities PccUtilities Database Utilities

Phone Variant Private label information specified in sys.cfg

ProgramName Variant Private label information specified in sys.cfg

ShowAcUI Boolean This value is write-only. If set to "1", the PCCharge COM form becomes visible.

Street Variant Private label information specified in sys.cfg

Version String Private label information specified in sys.cfg

Web Variant Private label information specified in sys.cfg

PccActiveCharge Methods

Method Name Returned Value Description - PccActiveCharge Methods

GetActiveIndex Integer Returns index of active TID

GetIndex Integer Returns index of specified arguments

GetMaxMerchants Integer Returns number of TIDs in PCCharge

ReInitialize Boolean Re-initializes PCCharge without shutting the program down.

ShutDown Boolean Shuts down current instance of PCCharge

StartUp** Boolean Starts up and initializes application

** Be sure to use this method to ensure that all variables and data structures are properly initialized.

PCCharge Version 5.9.0
Updated 2/8/2010

 377

PccDBBackup

The PccDBBackup object allows access to PCCharge's transaction archive capabilities. This feature is

briefly described below, however, a detailed explanation of this feature can be found in the PCCharge
Pro or Payment Server User Manuals.

PCCharge offers transaction archive capabilities via integration. Archived transactions are moved from

PCCharge's working database (pccw.mdb) into the archive database (pccwhist.mdb). The following
archive integration methods are supported:

 OCX Method

 OLE/COM Method

 File Method

 TCP Method

The action code ZA specifies a transaction archive request. Consult the section DevKit Constants for

descriptions of values (see page 141), and consult the section File Method for descriptions of
transaction fields (see page 478).

This is a Multi Use class.

PccDBBackup Properties

Property Name Data Type Description - PccDBBackup Properties

ArchivePre5_6 Boolean

Flag to indicate whether pre-PCCharge version 5.6 transactions should be archived.

TRUE – Archive Pre 5.6 Transactions

FALSE – Do not archive Pre 5.6 Transactions

Cancel Boolean Set to TRUE to cancel the archive operation in progress.

Enabled Boolean

Enable or disable current configuration
Valid values:

1 – Enable

0 – Disable

KeepDays Integer

Transaction archive preservation range. All transactions within the past number of

―keep days‖ will remain in the pccw.mdb database following a transaction archive

command.

Path String
Specify path for saved output files (Example: backed up transaction database). Must

end with a backslash ―\‖.

SizeLimit Long
Transaction archive size limit for GUI archive prompting and validation. Specified in

megabytes.

PccDBBackup Methods

Method Name Returned Value Description - PccDBBackup Methods

Backup(GUIPrompt) Boolean
Perform transaction archive. Returns TRUE if successful, FALSE otherwise. Set

GUIPrompt to FALSE during a transaction archive request to suppress a GUI error

message if the request fails.

LimitExceeded Boolean Transaction database exceeds the configured archive limit.

Load Boolean Load the saved archive configuration. Returns TRUE if successful, FALSE otherwise.

PCCWDatabaseSize Long Current transaction database size in bytes.

Save Boolean Save the current archive configuration. Returns TRUE if successful, FALSE otherwise.

PCCharge Version 5.9.0
Updated 2/8/2010

 378

PccUtilities

Provides various PCCharge utilities to the integrator.

PccUtilitiesMethods

Method Name Returned Value Description - PccUtilities Methods

BackUp Boolean
Backs up the merchant configuration files and PCCharge database to a ZIP file.

Requires the path to the PCCharge directory as a parameter.

Compact Boolean
Compacts the database and the settlement file. An optional parameter, the index of
the merchant number, can be passed in. If this value is passed, the compact

function will only compact the transactions related to that index.

Repair Boolean Calls the database engine repair function. Repairs the PCCharge database.

Restore Boolean
Restores the merchant configuration files and PCCharge database into the PCCharge
directory. Requires the path to the directory that contains the ZIP file as a

parameter

PCCharge Version 5.9.0
Updated 2/8/2010

 379

Setup Related Classes

PccAddv

This class contains address verification system settings for the current instance of PCCharge. This is a
Multi Use class.

PccAddv Properties

Property Name Data Type Description - PccAddv Properties

Add5Zip Boolean
Indicates whether to capture transaction when address and 5-digit zip code

match.

Add9Zip Boolean
Indicates whether to capture transaction when address and 9-digit zip code

match.

AddNoZip Boolean
Indicates whether to capture transaction when address matches but zip code does

not.

Canceled Boolean Used internally

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

NoAdd5Zip Boolean
Indicates whether to capture transaction when 5-digit zip code matches but
address does not.

NoAdd9Zip Boolean
Indicates whether to capture transaction when 9-digit zip code matches but

address does not.

NoMatch Boolean
Indicates whether to capture transaction when address and zip code do not
match.

NotAvailable Boolean
Indicates whether to capture transaction when address information is not

available.

Retry Boolean
Indicates whether to retry address verification when processor used by system is

down.

ServiceNotAvailable Boolean Indicates whether system used to verify the address is available.

PccAddv Methods

Method Name Returned Value Description - PccAddv Methods

CreateAddressFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

ShouldShow Boolean Indicates whether AVS setup form is visible

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 380

PccADSISetup

This class contains Alliance Data Systems extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccADSISetup Properties

Property Name Data Type Description - PccADSISetup Properties

BatchNumber String
The Current batch number. This value is incremented by the processor after each
successful settlement.

BType Integer N/A

Canceled Boolean Used internally

CompanyID String The company ID assigned by the merchant‘s bank or processor

CompanyIdentifier String A unique company identifier assigned to each merchant by Alliance Data Systems.

DebitReturnAmount String Amount of Debit and EBT Returns

DebitReturnCount String Count of Debit and EBT Returns

DebitSalesAmount String Amount of Debit and EBT Sales

DebitSalesCount String Count of Debit and EBT Sales

DebitVoidAmount String Amount of Debit and EBT Voids

DebitVoidCount String Count of Debit And EBT Voids

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

MCSalesAmount String Amount of MC Sales

MCSalesCount String Count of MC Sales

PLabel Boolean Flag that indicates if the merchant will accept Private Label Cards.

PLabelSalesAmount String Amount of Private Label Sales

PLabelSalesCount String Count of Private Label Sales

PurchasedAmount String Amount of credit purchase

PurchasedCount String Count of credit purchases or post authorizations

ReturnedAmount String Amount of credit Returns

ReturnedCount String Count of credit Returns

SequenceNumber String
Unique sequence number that is assigned to each transaction. Also called a

reference number.

VisaSalesAmount String Amount of Visa Sales

VisaSalesCount String Count of Visa Sales

VoidedAmount String Amount of credit Voids

VoidedCount String Count of credit Voids

VoidReturnAmount String Amount of Credit Void Returns

VoidReturnCount String Count of credit Void Returns

PCCharge Version 5.9.0
Updated 2/8/2010

 381

PccADSISetup Methods

Method Name Returned Value Description - PccADSISetup Methods

CreateADSIExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 382

PccAmexDialSetup

This class contains Amex split-dial settings for the current instance of PCCharge. This is a Multi Use
class.

PccAmexDialSetup Properties

Property Name Data Type Description - PccAmexDialSetup Properties

AMEXDirect Boolean Indicates whether split dial will be used

BType String

The merchant‘s business type. Valid values:

0 – Retail / MOTO

4 – Restaurant

Canceled Boolean Used internally

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

MerchantNumber String
The American Express-assigned Service Establishment (SE) Number. Length: 10

bytes

PrimaryPhone String
The Primary number that will be used when processing transactions via dial-up

modem.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related
restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SecondaryPhone String
The Secondary number that will be used when processing transactions via dial-up

modem.

TerminalID String The American Express-assigned Terminal ID. Length: 2 bytes

PccAmexDialSetup Methods

Method Name Returned Value Description - PccAmexDialSetup Methods

CreateAmexspltFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 383

PccAmexSettleSetup

This class contains Amex Settlement settings for the current instance of PCCharge. This is a Multi Use
class.

PccAmexSettleSetup Properties

Property Name Data Type Description - PccAmexSettleSetup Properties

AmexSettle Boolean Used internally

BatchNumber Integer Used internally

BType Byte Used internally

Canceled Boolean Used internally

CurrencyCode String

The Currency Code assigned by the merchant‘s bank or processor. This

parameter is used to identify the merchant‘s settlement currency. Length: 3

digits. Valid Value: 840 – U.S. Dollars

DefaultDescriptor String

General Description of what type of transactions will be processed by this

merchant. This value should be determined by the merchant and American

Express. Length: 23 Characters. Example: MENS WEAR, HARDWARE,
ACCESSORIES

FileSeqNumber Integer

The File Sequence Number is the PCID-specific, unique sequence number for a
file. That means that if you deliver transactions to American Express for more

than one PCID, each PCID‘s transactions are forwarded in a separate Financial

Settlement File with its own file sequence numbering scheme. Note: A file

sequence number must not be repeated during a calendar year. Length: 6 bytes.
Example: 000001

HostPort String
The FTP port used when processing AMEX settlements. This value is provided by

American Express.

HostURL String
The FTP address used when processing AMEX settlements. This value is provided
by American Express.

Index String

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

InvoiceBatchCode String

The Invoice Batch Code assigned by American Express. This code specifies

processing options applicable to the batch. The code to be entered in this field is

supplied by American Express at the same time the Process Control ID (PCID) is

assigned. Length: 3 bytes

InvoiceSubcode String

The Invoice Subcode assigned by American Express. This code specifies additional

Amex controls and processing requirements. The code to be entered in this field

is supplied by American Express at the same time the Process Control ID (PCID)

and Invoice Batch code are assigned. Length: 2 bytes

Password String
The password used to send settlements to American Express via FTP. This value is

provided by American Express.

PCID String

The Process Control ID / Username assigned by American Express. This parameter

is a unique identifier code assigned to merchants, locations, and Authorized Third
Party Processors so that they can directly access the American Express Financial

Settlement system to deliver settlement data. In some cases, a merchant may

not receive a unique PCID, because many franchises and authorized processors

submit files for multiple locations under one PCID. Length: 6 bytes

RecSeqNumber Integer Used internally

RequestTimeout String Not Yet Implemented

SettlementFileName String Used internally

TotalTransAmt Long Used internally

TransCount Long Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 384

Property Name Data Type Description - PccAmexSettleSetup Properties

Username String

The Process Control ID / Username assigned by American Express. This parameter

is a unique identifier code assigned to merchants, locations, and Authorized Third
Party Processors so that they can directly access the American Express Financial

Settlement system to deliver settlement data. In some cases, a merchant may

not receive a unique PCID, because many franchises and authorized processors

submit files for multiple locations under one PCID. Length: 6 bytes

PccAmexSettleSetup Methods

Method Name Returned Value Description - PccAmexSettleSetup Methods

CreateArchiveDir Boolean Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 385

PccBPASSetup

This class contains FDMS Atlanta extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccBPASSetup Properties

Property Name Data Type Description - PccBPASSetup Properties

AppID String Used internally

BType Integer

The merchant‘s business type. Valid values:
0 = Retail

1 = Mail order

2 = Electronic commerce
3 = Restaurant

Canceled Boolean Used internally

Connect String

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP EFSnet XML

2 – TCP/IP EFSnet Leased Line

3 – TCP/IP EFSnet Pass Through

CurrencyCode String

The Currency Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

DeviceNumber String
Device number assigned by the merchant‘s bank or processor. Length: 3 digits.

Example: 001.

DeviceType String
Device type assigned by the merchant‘s bank or processor. Length: 2 characters.

Example: 5S.

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

ExpansionFactor String
Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are

processed using the PCCharge GUI.

FSInquiry Boolean Used internally

GiftConnect Integer

Indicates method of connection to processor when processing gift cards.
Valid values:

0 – Dial-up

1 – TCP/IP EFSnet XML

2 – TCP/IP EFSnet Leased Line

3 – TCP/IP EFSnet Pass Through

GiftCurrencyCode String
The Currency Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

GiftDeviceNumber String
Device number assigned by the merchant‘s bank or processor. Length: 3 digits.

Example: 001.

GiftDeviceType String
Device type assigned by the merchant‘s bank or processor. Length: 2 characters.

Example: 5S.

GiftDialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

GiftPort String
The system/socket port used to connect to the processor when processing via
TCP/IP.

GiftSequenceNumber String
A unique sequence number assigned to each transaction by PCCharge. Length: 6

digits

PCCharge Version 5.9.0
Updated 2/8/2010

 386

Property Name Data Type Description - PccBPASSetup Properties

GiftSettleTimeOut String

The Internet Settlement Timeout Value. If GiftDialBackup is set to TRUE,

GiftSettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

GiftStateCode String

The merchant‘s State Code. Length: 2 digits

Valid Values:

Alabama – 01; Alaska – 02; Arizona – 04; Arkansas – 05; California – 06; Colorado

– 08; Connecticut – 09; Delaware – 10; District of Columbia – 11; Florida – 12;

Georgia – 13; Puerto Rico – 14; Hawaii – 15; Idaho – 16; Illinois – 17; Indiana – 18;

Iowa – 19; Kansas – 20; Kentucky – 21; Louisiana – 22; Maine – 23; Maryland – 24;

Massachusetts – 25; Michigan – 26; Minnesota – 27; Mississippi – 28; Missouri – 29;

Montana – 30; Nebraska – 31; Nevada – 32; New Hampshire – 33; New Jersey – 34;

New Mexico – 35; New York – 36; North Carolina – 37; North Dakota – 38; Ohio –

39; Oklahoma – 40; Oregon – 41; Pennsylvania – 42; Rhode Island – 44; South

Carolina – 45; South Dakota – 46; Tennessee – 47; Texas – 48; Utah – 49; Vermont

– 50; Virginia – 51; Virgin Islands – 52; Washington – 53; West Virginia – 54;

Wisconsin – 55; Wyoming – 56

GiftStoreID String
EFSnet store number assigned by the merchant‘s bank or processor. Length: 32

digits.

GiftStoreKey String
EFSnet store password assigned by the merchant‘s bank or processor. Length: 64
digits

GiftTimeOut String

The Internet Authorization Timeout Value. If GiftDialBackup is set to TRUE,

GiftTimeOut determines how long PCCharge will wait for a gift card transaction
to time out before attempting the transaction via dial Format: Seconds

GiftURL String
The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Port String
The system/socket port used to connect to the processor when processing via
TCP/IP.

ReversalOption String
0 – Retry reversals the specified number of times set in the .RetryReversalCount

property. 1 – Retry reversals indefinitely

ReversalNumberRetry String The number of times a reversal is retried

RetryReversalSeconds String The amount of time (in seconds) between reversal retries

ReversalSeconds String The amount of time (in seconds) between reversal processing

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related
restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SequenceNumber String
A unique sequence number assigned to each transaction by PCCharge. Length: 6

digits

SettlePwd String Password required for settlement

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

PCCharge Version 5.9.0
Updated 2/8/2010

 387

Property Name Data Type Description - PccBPASSetup Properties

StateCode String

The merchant‘s State Code. Length: 2 digits

Valid Values:

Alabama – 01; Alaska – 02; Arizona – 04; Arkansas – 05; California – 06; Colorado

– 08; Connecticut – 09; Delaware – 10; District of Columbia – 11; Florida – 12;

Georgia – 13; Puerto Rico – 14; Hawaii – 15; Idaho – 16; Illinois – 17; Indiana – 18;

Iowa – 19; Kansas – 20; Kentucky – 21; Louisiana – 22; Maine – 23; Maryland – 24;

Massachusetts – 25; Michigan – 26; Minnesota – 27; Mississippi – 28; Missouri – 29;

Montana – 30; Nebraska – 31; Nevada – 32; New Hampshire – 33; New Jersey – 34;

New Mexico – 35; New York – 36; North Carolina – 37; North Dakota – 38; Ohio –

39; Oklahoma – 40; Oregon – 41; Pennsylvania – 42; Rhode Island – 44; South

Carolina – 45; South Dakota – 46; Tennessee – 47; Texas – 48; Utah – 49; Vermont

– 50; Virginia – 51; Virgin Islands – 52; Washington – 53; West Virginia – 54;

Wisconsin – 55; Wyoming – 56

StoreID String
EFSnet store number assigned by the merchant‘s bank or processor. Length: 32

digits

StoreKey String
EFSnet store password assigned by the merchant‘s bank or processor. Length: 64
digits.

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time

out before attempting the transaction via dial Format: Seconds

URL String
The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PccBPASSetup Methods

Method Name Returned Value Description - PccBPASSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowGC Boolean

Shows a GUI form that allows the end-user to enter extended or advanced Gift
Card configuration information such as the business type, communication method,

or other related settings. Returns TRUE if successful, FALSE otherwise. Note: If

the end-user clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGC.

SynchronizeSequenceN

um
None Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 388

PccBPSGiftSetup

This class contains Fifth-Third – St. Pete gift card extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccBPSGiftSetup Properties

Property Name Data Type Description - PccBPSGiftSetup Properties

BankID String
Acquiring Institution Identification Code assigned by the merchant‘s bank or
processor. Length: 4 digits

BType Integer Used internally

Canceled Boolean Used internally

Connect String

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean N/A

GiftConnect Integer

Indicates method of connection to processor when processing gift cards.

Valid values:

0 – Dial-up

1 – TCP/IP

GiftDialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

GiftPassword String
The Password assigned by the merchant‘s bank or processor for TCP/IP

processing.

GiftPort String The system/socket port used to connect to the processor when processing via

TCP/IP.

GiftSettleTimeOut String

The Internet Settlement Timeout Value. If GiftDialBackup is set to TRUE,

GiftSettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

GiftTimeOut String
The Internet Authorization Timeout Value. If GiftDialBackup is set to TRUE,

GiftTimeOut determines how long PCCharge will wait for a gift card transaction
to time out before attempting the transaction via dial Format: Seconds

GiftReversalNumberRetry String The number of times to retry a reversal

GiftRetryReversalSeconds String The amount of time (in seconds) between reversal retries

GiftReversalSeconds String The amount of time (in seconds) between reversal processing

GiftURL String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

GiftUsername String
The Username assigned by the merchant‘s bank or processor for TCP/IP

processing.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Password String N/A

PCard Boolean Used internally

Port String N/A

PrimaryAuthIP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Retrieval String
Retrieval Reference Number. Used to identify and track the original transaction.

This value is assigned by the merchant‘s processor. Length: 8 digits

PCCharge Version 5.9.0
Updated 2/8/2010

 389

Property Name Data Type Description - PccBPSGiftSetup Properties

SettleTimeOut String N/A

TerminalID String Contains terminal ID for merchant

TimeOut Long N/A

URL String N/A

Username String N/A

PccBPSGiftSetup Methods

Method Name Returned Value Description - PccBPSGiftSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Integer

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 390

PccBPSSetup

This class contains Fifth-Third – St. Pete extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccBPSSetup Properties

Property Name Data Type Description - PccBPSSetup Properties

BankID String
Acquiring Institution Identification Code assigned by the merchant‘s bank or
processor. Length: 4 digits

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail
1 – Mail order

2 – Electronic Commerce

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Password String
The Password assigned by the merchant‘s bank or processor for TCP/IP
processing.

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

PrimaryAuthIP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Retrieval String
Retrieval Reference Number. Used to identify and track the original transaction.
This value is assigned by the merchant‘s processor. Length: 8 digits

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

TerminalID String
Card Acceptor Terminal ID code. This value identifies the terminal at the

merchant (card acceptor) location at which the transaction was entered. Length:

3 digits

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Username String The Username assigned by the merchant‘s bank or processor for TCP/IP
processing.

PCCharge Version 5.9.0
Updated 2/8/2010

 391

PccBPSSetup Methods

Method Name Returned Value Description - PccBPSSetup Methods

CreateBPSExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Integer

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 392

 PccCESSetup

This class contains FDMS North/Cardnet extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccCESSetup Properties

Property Name Data Type Description - PccCESSetup Properties

BType String

The merchant‘s business type.
Valid values:

0 – Retail
1 – Mail order

2 – Electronic Commerce

Canceled Boolean Used internally

CheckService Integer

Indicates if merchant is set up for check services.

Valid Values:

0 – None

1 – ETC

2 – Equifax

3 – NPC

4 – TeleCheck

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-Up

1 – First Data IPN (Datawire – TCP/IP)

CSNumber String

The Merchant‘s customer service phone number. This number will be printed on

the customer‘s statement if PrintCSNumber is set to TRUE. Not applicable for

Retail transactions.

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String

The Datawire ID. The value is provided to the merchant by their Merchant

Service Provider or Processing company. The DID is required to process
transactions via the Internet using the Datawire network. This value will be

unique for each merchant number used.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

MaxBatchSize String

Specifies the maximum number of transactions per batch that PCCharge will send
to the processor. If the number of transactions to be settled is greater than the

number specified in this setting, PCCharge will split the batch into multiple

batches, each containing (at most) the number transactions specified in this
setting. The batches are then sent to the processor one at a time. Example: A

merchant has 250 transaction to settle and the MaxBatchSize is set to 100.

PCCharge will send two 100-transaction batches and one 50-transaction batch.

Max Value: 999

MCReversal Integer N/A

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

PrintCSNumber Boolean
Flag that indicates whether to print customer service phone number on receipt.

Not applicable for Retail transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 393

Property Name Data Type Description - PccCESSetup Properties

RetryCount Integer Used internally

SecondaryIP Boolean Used internally

SendError Boolean Used internally

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

URL2 String The Secondary Hostname, URL, or IP address used to connect to the processor

when processing via TCP/IP.

URLAddress String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

VSReversal Boolean N/A

PccCESSetup Methods

Method Name Returned Value Description - PccCESSetup Methods

CreateCESAdvanceFile None Used internally

CreateCESExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK

after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 394

PccCheckSetup

This class contains information about the credit card company setup in the current instance of
PCCharge.
This is a Global Multi Use class.

Note: The extended information for check processors that support conversion and guarantee can be

accessed by using the PccCreditSetup class.

PccCheckSetup Properties

Property Name Data Type Description - PccCheckSetup Properties

Canceled Boolean Used internally

Company Integer Used internally

DemoMode Boolean Used internally

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

PrimaryPhone String
The Primary number that will be used when processing transactions via dial-up

modem.

Processor String

The code for the processing company. This value can be no more than four

characters and must be capitalized. A list of valid processor codes are listed in
the Processing Company Codes section (see page 150).

Records Integer
Read-only property that Indicates how many merchant numbers have been set up

in the current tid.pcc file.

SecondaryPhone String
The Secondary number that will be used when processing transactions via dial-up

modem.

Service Integer

Indicates the type of check service that is supported.

Valid Values:

0 – MICR

1 – Checks on Delivery

2 – Driver‘s License

3 – Double ID

TID String
The check company Site ID / merchant number assigned by the merchant‘s bank
or processor.

Version String Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 395

PccCheckSetup Methods

Method Name Returned Value Description - PccCheckSetup Methods

CreateCheckFile None Used internally

CreateChkExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved.

PCCharge Version 5.9.0
Updated 2/8/2010

 396

PccCompany

This class contains information about the company name setup for the current instance of PCCharge
and the associated active merchant number index. This is a Multi Use class.

PccCompany Properties

Property Name Data Type Description - PccCompany Properties

Canceled Boolean Used internally

City String The name of city in which merchant‘s company is located.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

LogonScreen Boolean N/A

Name String The name of merchant‘s company.

State String The abbreviation of state in which merchant‘s company is located.

Street String The street address of merchant‘s company.

Zip String The zip code of region in which merchant‘s company is located.

PccCompany Methods

Method Name Returned Value Description - PccCompany Methods

CreateCompanyFile None Used internally

IsCompanyInfoValid Boolean

Performs a check that determines whether or not the Merchant‘s company

information has been properly entered. Returns TRUE if the company information

is valid, FALSE otherwise.

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Load. Note: Set the Index property prior

to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 397

PccConfig

This class contains information about the global preferences for the current instance of PCCharge. This
is a Multi Use class.

PccConfig Properties

Property Name Data Type Description - PccConfig Properties

AcceptAll String

Flag that indicates whether merchant accept all card types.
Valid Values:

0 – Do not accept all card types (specify individual card types using the other

AcceptXXXX properties and the PrivateLabel property)

1 – Accept all card types

AcceptAMEX String

Flag that Indicates whether merchant will accept American Express cards.

Valid Values:

0 – Do not accept American Express cards

1 – Accept American Express cards

AcceptCBLN String

Flag that Indicates whether merchant will accept Carte Blanche cards.

Valid Values:

0 – Do not accept Carte Blanche cards

1 – Accept Carte Blanche cards

AcceptDCCB String

Flag that Indicates whether merchant will accept Diner‘s Club cards.
Valid Values:

0 – Do not accept Diner‘s Club cards

1 – Accept Diner‘s Club cards

AcceptDISC String

Flag that Indicates whether merchant will accept Discover cards.
Valid Values:

0 – Do not accept Discover cards

1 – Accept Discover cards

AcceptENRT String

Flag that Indicates whether merchant will accept Enroute cards.

Valid Values:

0 – Do not accept Enroute cards

1 – Accept Enroute cards

AcceptJAL String

Flag that Indicates whether merchant will accept Japanese Airlines (JAL) cards.

Valid Values:

0 – Do not accept Japanese Airlines (JAL) cards

1 – Accept Japanese Airlines (JAL) cards

AcceptJCB String

Flag that Indicates whether merchant will accept JCB cards.

Valid Values:

0 – Do not accept JCB cards

1 – Accept JCB cards

AcceptMC String

Flag that Indicates whether merchant will accept MasterCard cards.
Valid Values:

0 – Do not accept MasterCard cards

1 – Accept MasterCard cards

AcceptVISA String

Flag that Indicates whether merchant will accept Visa cards.
Valid Values:

0 – Do not accept Visa cards

1 – Accept Visa cards

AddCustomer Boolean

Flag that indicates whether to prompt user to have PCCharge add customer to the

customer database.
Valid Values:

TRUE – Prompt

FALSE – Do not prompt

Note: This setting only applies to transaction processing using the PCCharge GUI.

AddVerify Boolean Used internally

BillPayPrompt Boolean
Flag that indicates whether to prompt user to indicate whether the transaction is

a bill payment.

PCCharge Version 5.9.0
Updated 2/8/2010

 398

Property Name Data Type Description - PccConfig Properties

CCUser String

Flag available for credit card duplicate checking criteria. Enables or disables

duplicate checking by user name. See the description of ―Duplicate
Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: Off

Valid Values:
0 – Off

1 - On

CCMerchant String

Flag available for credit card duplicate checking criteria. Enables or disables

duplicate checking by merchant number. See the description of ―Duplicate
Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: On
Valid Values:

0 – Off

1 - On

CCCard String

Flag available for credit card duplicate checking criteria. Enables or disables
duplicate checking by card number. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.
Default Value: On

Valid Values:

0 – Off

1 - On

CCExpDate String

Flag available for credit card duplicate checking criteria. Enables or disables

duplicate checking by expiration date. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.
Default Value: On

Valid Values:

0 – Off
1 - On

CCTicket String

Flag available for credit card duplicate checking criteria. Enables or disables

duplicate checking by ticket number. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: Off

Valid Values:
0 – Off

1 - On

CCAmount String

Flag available for credit card duplicate checking criteria. Enables or disables

duplicate checking by amount. See the description of ―Duplicate Transactions‖ in
the Warnings, Tips, and Guidelines section (see page 55) for more information.

Default Value: On

Valid Values:

0 – Off
1 - On

Canceled Boolean Used internally

chkAuthAmounts String

Flag that indicates whether to process a Post-Auth if the amount of the Post-Auth

is greater than the amount of the corresponding Pre-Auth.
Valid Values:

0 – Do not enable the processing of Post-Auths with a greater amounts than their
corresponding Pre-Auths.

1 – Enable the processing Post-Auths with a greater amounts than their
corresponding Pre-Auths.

Note: Settling a transaction with an amount that is different (whether less than

or greater than) than the original authorization amount can cause transactions to

downgrade.

ChkContracts Boolean

Flag that indicates whether to notify the user when recurring billing contracts are

due at startup.

Valid Values:

TRUE – Notify user

FALSE – Do not notify user
Note: This setting only applies to transaction processing using the PCCharge GUI.

PCCharge Version 5.9.0
Updated 2/8/2010

 399

Property Name Data Type Description - PccConfig Properties

ChkDuplicates Boolean

Flag that indicates whether PCCharge requires duplicate transactions to be

forced. See the description of ―Duplicate Transactions‖ in the Warnings, Tips,
and Guidelines section (see page 55) for more information.

Valid Values:

TRUE – Require duplicate transactions to be forced

FALSE – Do not require duplicate transactions to be forced

ChkIP Boolean

Flag that Indicates whether to activate the TCP Interface for incoming transaction
requests. Consult the TCP Interface section (see page 518) for more information

on using the TCP/IP Interface.

Valid Values:

TRUE – Activate TCP Interface

FALSE – (Default) Do not activate TCP Interface

ChkMSV String

Flag that indicates whether to activate Magnetic Strip Verification.

Valid Values:

0 – Do not enable Magnetic Strip Verification

1 – Enable Magnetic Strip Verification
Note: This setting only applies to transactions performed using the PCCharge GUI.

chkPrompt Boolean

Flag that indicates whether to prompt user for CPS 2000 Qualifiers (ticket number

and zip code).

Valid Values:

TRUE – Prompt for CPS 2000 Qualifiers

FALSE – Do not prompt for CPS 2000 Qualifiers
Note: This setting only applies to transaction processing using the PCCharge GUI.

DCUser String

Flag available for debit card duplicate checking criteria. Enables or disables
duplicate checking by user name. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: Off
Valid Values:

0 – Off

1 - On

DCMerchant String

Flag available for debit card duplicate checking criteria. Enables or disables

duplicate checking by merchant number. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.
Default Value: On

Valid Values:

0 – Off
1 - On

DCCard String

Flag available for debit card duplicate checking criteria. Enables or disables

duplicate checking by card number. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: On

Valid Values:

0 – Off
1 - On

DCExpDate String

Flag available for debit card duplicate checking criteria. Enables or disables

duplicate checking by expiration date. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: On

Valid Values:
0 – Off

1 - On

DCTicket String

Flag available for debit card duplicate checking criteria. Enables or disables

duplicate checking by ticket number. See the description of ―Duplicate
Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: Off
Valid Values:

0 – Off

1 - On

PCCharge Version 5.9.0
Updated 2/8/2010

 400

Property Name Data Type Description - PccConfig Properties

DCAmount String

Flag available for debit card duplicate checking criteria. Enables or disables

duplicate checking by amount. See the description of ―Duplicate Transactions‖ in
the Warnings, Tips, and Guidelines section (see page 55) for more information.

Default Value: On

Valid Values:

0 – Off
1 - On

Days String

Flag available for duplicate checking criteria. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.
Default Value: 01

DefaultTID Boolean

Use Default Processor Flag. This flag indicates whether to use the first merchant

number set up in PCCharge if one is not specified in the transaction request.
Consult the Multi-Merchant Support section (see page 68) for more information

on the ―Use Default Processor‖ option.

Valid Values:

TRUE – Use the first merchant number.

FALSE – Do not use the first merchant number.

EBUser String

Flag available for EBT card duplicate checking criteria. Enables or disables

duplicate checking by user name. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: Off

Valid Values:

0 – Off
1 - On

EBMerchant String

Flag available for EBT card duplicate checking criteria. Enables or disables

duplicate checking by merchant number. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: On

Valid Values:
0 – Off

1 - On

EBCard String

Flag available for EBT card duplicate checking criteria. Enables or disables

duplicate checking by card number. See the description of ―Duplicate
Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: On

Valid Values:
0 – Off

1 - On

EBTicket String

Flag available for EBT card duplicate checking criteria. Enables or disables
duplicate checking by ticket number. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: Off
Valid Values:

0 – Off

1 - On

EBAmount String

Flag available for EBT card duplicate checking criteria. Enables or disables
duplicate checking by amount. See the description of ―Duplicate Transactions‖ in

the Warnings, Tips, and Guidelines section (see page 55) for more information.

Default Value: On
Valid Values:

0 – Off

1 - On

PCCharge Version 5.9.0
Updated 2/8/2010

 401

Property Name Data Type Description - PccConfig Properties

EnableTCPIPClientRev

ersals
Boolean

Flag that indicates whether to enable client-side TCP/IP reversals. Client-side

TCP/IP reversals are generated for some processors when the connection to the
client is lost before PCCharge is able to return the transaction response to the

client. Client-side reversals, when enabled, will help prevent double charges in

cases where the client does not receive the response from the client as expected.

Valid Values:

TRUE – Enable TCP/IP Client Reversals

FALSE – Disable TCP/IP Client Reversals
Note: This option should be disabled if using a processor other than FDMS Atlanta.

EnableTotTime String

Flag that indicates whether to return the Total Elapsed Time with the transaction
response.

Valid Values:

0 – Do not return the Total Elapsed Time

1 – Return the Total Elapsed Time

EnableTransTime String

Flag that indicates whether to return the Transaction Elapsed Time with the
transaction response.

Valid Values:

0 – Do not return the Transaction Elapsed Time

1 – Return the Transaction Elapsed Time

Encrypt Boolean
N/A –Transaction data is always encrypted based on CISP guidelines. Refer to the
Important Security Notice (see page 9) for more information.

Hours String

Flag available for duplicate checking criteria. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: 00

EncryptSettle Boolean
N/A –Transaction data is always encrypted based on CISP guidelines. Refer to the

Important Security Notice (see page 9) for more information.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IPAddress String N/A

LastValidYear String

The last year that will be considered a valid expiration date. Currently, the

default value is ―09‖. Length: 2 digits. Format: YY Example: If LastValidDate

is set to 05, then cards between 06 and 99 are considered to be 1906 to 1999,
and cards between 00 and 05 are 2000 to 2005.

Minutes String

Flag available for duplicate checking criteria. See the description of ―Duplicate

Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for
more information.

Default Value: 00

MTimer String

Multi-trans wait flag. This flag indicates whether PCCharge should leave the

modem connection open in anticipation of other transactions that will follow
shortly. Note that PCCharge can only keep the connection open as long as is

allowed by the processing company.

Valid Values:

0 – Do not leave the modem connection open after each transaction

1 – Attempt to leave the modem connection open after each transaction
See the section Multi-trans Wait for more information (see page 67). This Flag

has no effect if processing will occur over IP or leased line.

Pass String

The password for the ‗system‘ user ID. Setting a password activates cashier
permissions (this feature is only available in the PCCharge GUI)

Note: It is recommended that a password always be set when using PCCharge in a

live environment.

Port Integer

If the TCP Interface is activated (ChkIP = TRUE), this value is the TCP port that
will be used for incoming transaction requests. Consult the TCP Interface section

(see page 518) for more information on using the TCP/IP Interface.

Default Value: 31419 Note: The default port of 31419 should be changed to

maximize security when processing transactions in a live environment.

PrivateKey String N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 402

Property Name Data Type Description - PccConfig Properties

PrivateLabel Boolean

Flag that Indicates whether merchant will accept Private Label cards.

Valid Values:

TRUE – Accept Private Label cards

FALSE – Do not accept Private Label cards

ProxyServer Boolean N/A

QTimer String

This setting determines how often PCCharge will poll its directory for incoming

transaction requests (.inx and .inp files). The default value of 00.50 should
not be changed unless the client machine is slow or there is network lag.

Format: seconds.

ReAuthAttempts String Used internally

Seconds String

Flag available for duplicate checking criteria. See the description of ―Duplicate
Transactions‖ in the Warnings, Tips, and Guidelines section (see page 55) for

more information.

Default Value: 00

SecureCustomerDB Boolean

Flag that indicates whether to mask credit card number on the Customer
Database screen.

Valid Values:

TRUE – Mask credit card numbers

FALSE – Do not mask credit card numbers
Note: This setting only applies to transaction processing using the PCCharge GUI.

UseProxyServer Boolean N/A

Version String Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 403

PccConfig Methods

Method Name Returned Value Description - PccConfig Methods

CreateConfigFile None Used internally

GetMerchantInfo String

The GetMerchantInfo method returns a string containing all of the merchant
numbers and processors set up in PCCharge. The string will also indicate whether

the processor is Host based (H), Terminal based (T), or a hybrid (Y). The string

will begin with STX and will end with ETX. GS will separate each record, and FS

will separate fields within a record. Example:
<STX>CES <FS>000000927996296767<FS>T<GS>GSAR<FS>

999999999999519<FS>T<GS>VISA<FS>999999999911<FS>T<ETX>

Refer to the section Multi-Merchant Support (see page 68) for more information

on the GetMerchantInfo method.

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 404

PccCreditSetup

This class contains information about the credit card company setup in the current instance of
PCCharge. This is a Multi Use class.

PccCreditSetup Properties

Property Name Data Type Description - PccCreditSetup Properties

Canceled Boolean Used internally

Company Integer Used internally

Default Boolean

Flag that indicates whether to use default phone numbers. If this value is set to

TRUE, any changes to the values in PrimaryPhone and SecondaryPhone will
not take effect.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the Processor or
the Merchant Services Provider. Note: This property cannot be modified using

the Save method.

PccADSISetup PccADSISetup Provides extended setup information for Alliance Data Systems, Inc.

PccAmexDialSetup
PccAmexDialSetu

p
Provides extended setup information for American Express split dial

PccAmexSettleSetup
PccAmexSettleSe

tup
Provides extended setup information for American Express direct settlement

PccASISetup PccASISetup No longer Supported

PccBMONSetup PccBMONSetup No longer Supported

PccBPASSetup PccBPASSetup Provides extended setup information for FDMS Atlanta, Inc.

PccBPSSetup PccBPSSetup Provides extended setup information for Fifth-Third Bank – St. Pete

PccCESSetup PccCESSetup Provides extended setup information for FDMS North / Cardnet

PccDiscDialSetup PccDiscDialSetup No longer Supported

PccEchoSetup PccEchoSetup Provides extended setup information for ECHO

PccENCNSetup PccENCNSetup No longer Supported

PccEZCKSetup PccEZCKSetup
Provides extended setup information for Check Services powered by RMRS (Check

Conversion settings)

PccFDCNSetup PccFDCNSetup Provides extended setup information for FDMS Nashville / Envoy

PccFDCSetup PccFDCSetup Provides extended setup information for FDMS Omaha / FDR

PccGsarSetup PccGsarSetup Provides extended setup information for Chase Paymentech

PccHPTSSetup PccHPTSSetup Provides extended setup information for Heartland Payment Systems

PccIPGSSetup PccIPGSSetup No longer Supported

PccISDNSetup PccISDNSetup No longer Supported

PccLYNKSetup PccLYNKSetup Provides extended setup information for RBS WorldPay, Inc.

PccMDISetup PccMDISetup No longer Supported

PccMPSSetup PccMPSSetup No longer Supported

PccNBSetup PccNBSetup Provides extended setup information for FDMS South / NaBanco

PccNBSSetup PccNBSSetup Provides extended setup information for National Bankcard Services

PccNDCSetup PccNDCSetup Provides extended setup information for Global Payments-East

PccNovaSetup PccNovaSetup Provides extended setup information for Elavon (NOVA)

PccNovusSetup PccNovusSetup No longer Supported

PccNPCSetup PccNPCSetup Provides extended setup information for National Processing Company

PCCharge Version 5.9.0
Updated 2/8/2010

 405

Property Name Data Type Description - PccCreditSetup Properties

PccRMRSSetup PccRMRSSetup
Provides extended setup information for National Check Network (Check

Conversion settings)

PccSPSSetup PccSPSSetup
Provides extended setup information for Secure Payment Systems (Check
Guarantee settings)

PccTelmSetup PccTelmSetup No longer Supported

PccTMHSetup PccTMHSetup No longer Supported

PccVisaSetup PccVisaSetup Provides extended setup information for TSYS

PFlag String Used internally

PreFix String Used internally

PrimaryPhone String
The Primary number that will be used when processing transactions via dial-up

modem.

Processor String

The code for the processing company. This value can be no more than four

characters and must be capitalized. A list of valid processor codes are listed in
the Processing Company Codes section (see page 150). Note: This property

cannot be modified using the Save method.

SecondaryPhone String
The Secondary number that will be used when processing transactions via dial-up
modem.

Version String Used internally

PccCreditSetup Methods

Method Name Returned Value Description - PccCreditSetup Methods

AddMerchantNumber Boolean Used internally

AddNewTID None Used internally

CreateCreditFile None Used internally

GetIndex Integer Used internally

GetPCCVersion String Returns the version number of the PCCharge that is currently running.

GetRecords Integer
Returns how many merchant numbers have been set up in the current tid.pcc
file.

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

ProcessorSetup Object Used internally

RemoveMerchantNumber Boolean Used internally

RemoveTID None Used internally

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show None

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved.

VerifyTID Boolean

The VerifyTID method returns TRUE if the processor code merchant number

that is passed to it is set up in PCCharge, otherwise, FALSE is returned.

Specifically, this method checks for the merchant number in the file TID.PCC,
which is located in the PCCharge directory.

PCCharge Version 5.9.0
Updated 2/8/2010

 406

PccDebitSetup

Contains debit card company information about the current instance of PCCharge. This is a Multi Use
class.

PccDebitSetup Properties

Property Name Data Type Description - PccDebitSetup Properties

Canceled Boolean Used internally

Company String Used internally

Default Boolean

Flag that indicates whether to use default phone numbers. If this value is set to

TRUE, any changes to the values in PrimaryPhone and SecondaryPhone will
not take effect.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

KeyManagement Integer Used internally

MasterKey Integer Used internally

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the Processor or

the Merchant Services Provider. Max Length: 32 characters. This value can be

alphanumeric.

PccBPASSetup PccBPASSetup Provides extended setup information for FDMS Atlanta

PccHPTSSetup PccHPTSSetup Provides extended setup information for Heartland Payment Systems

PccLYNKSetup PccLYNKSetup Provides extended setup information for RBS WorldPay

PccMPSSetup PccMPSSetup No longer Supported

PccNBSetup PccNBSetup Provides extended setup information for FDMS South / NaBanco

PccNBSSetup PccNBSSetup Provides extended seup information for National Bankcard Services

PccNDCSetup PccNDCSetup Provides extended setup information for Global Payments - East

PccNPCSetup PccNPCSetup Provides extended setup information for National Processing Company

PccVisaSetup PccVisaSetup Provides extended setup information for TSYS

PrimaryPhone String
The Primary number that will be used when processing transactions via dial-up

modem.

Processor String

The code for the processing company. This value can be no more than four

characters and must be capitalized. A list of valid processor codes are listed in
the Processing Company Codes section (see page 150).

SecondaryPhone String
The Secondary number that will be used when processing transactions via dial-up

modem.

SerialNumber String Used internally

WorkingKey String
The working key. Only applicable for Debit processors using Master Session
encryption.

PCCharge Version 5.9.0
Updated 2/8/2010

 407

PccDebitSetup Methods

Method Name Returned Value Description - PccDebitSetup Methods

CreateDebitFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved.

PCCharge Version 5.9.0
Updated 2/8/2010

 408

PccDMRKSetup

This class contains Datamark extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccDMRKSetup Properties

Property Name Data Type Description - PccDMRKSetup Properties

BatchNumber String
The Current batch number. This value is incremented by the processor after each
successful settlement.

BType Integer The merchant‘s business type. Valid values:

Canceled Boolean Used internally

Client String Client Number assigned by the merchant‘s bank or processor. Length: 4 digits

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

EDCType Integer Used internally

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are

processed using the PCCharge GUI.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

LastRRefNum String
Retrieval Reference Number. Used to identify and track the original transaction.
This value is assigned by the merchant‘s processor. Length: 8 digits

Password String
The Password assigned by the merchant‘s bank or processor for TCP/IP

processing.

Port Long
The system/socket port used to connect to the processor when processing via
TCP/IP.

PrimaryAuthIP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

PrimaryAuthPort String The system/socket port used to connect to the processor when processing via

TCP/IP.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related
restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

Sequence String
This field is for identifying transactions within the batch. Assigned by PCCharge

Length: 3 digits

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

SIIP Boolean
The Service Industries Incentive Program indicator flag. Used to indicate

recurring payments for service industries such as insurance, telecom and utilities.

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

PCCharge Version 5.9.0
Updated 2/8/2010

 409

Property Name Data Type Description - PccDMRKSetup Properties

URL String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Username String The Username assigned by the merchant‘s bank or processor for TCP/IP
processing.

PccDMRKSetup Methods

Method Name Returned Value Description - PccDMRKSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 410

PccEBTSetup

This class contains information about the EBT company setup in the current instance of PCCharge. This
is a Multi Use class.

PccEBTSetup Properties

Property Name Data Type Description - PccEBTSetup Properties

Canceled Boolean Used internally

Company String Used internally

Default Boolean

Flag that indicates whether to use default phone numbers. If this value is set to

TRUE, any changes to the values in PrimaryPhone and SecondaryPhone will
not take effect.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

KeyManagement Integer Used internally

MasterKey Integer Used internally

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the Processor or

the Merchant Services Provider. Max Length: 32 characters. This value can be

alphanumeric.

PccBPASSetup PccBPASSetup Provides extended setup information for FDMS Atlanta

PccNPCSetup PccNPCSetup Provides extended setup information for National Processing Company

PccVisaSetup PccVisaSetup Provides extended setup information for TSYS

PrimaryPhone String
The Primary number that will be used when processing transactions via dial-up

modem.

Processor String
The code for the processing company. This value can be no more than four
characters and must be capitalized. A list of valid processor codes are listed in

the Processing Company Codes section (see page 150).

SecondaryPhone String
The Secondary number that will be used when processing transactions via dial-up

modem.

WorkingKey String N/A

PccEBTSetup Methods

Method Name Returned Value Description - PccEBTSetup Methods

CreateEBTFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 411

PccEchoSetup

This class contains ECHO extended information for the current instance of PCCharge. This is a Public
Not Creatable class.

PccEchoSetup Properties

Property Name Data Type Description - PccEchoSetup Properties

BType Integer

The merchant‘s business type.
Valid values:

0 – Retail

1 – Direct Marketing

4 – Telemerchant

5 – Electronic Commerce

Canceled Boolean Used internally

Connect Integer

Indicates modem dial protocol.

Valid values:

0 – Compuserve

1 – Dial 800 Number

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

PccEchoSetup Methods

Method Name Returned Value Description - PccEchoSetup Methods

CreateECHOExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 412

PccEZCKSetup

This class contains Check Services powered by RMRS extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccEZCKSetup Properties

Property Name Data Type Description - PccEZCKSetup Properties

BounceFee String
The fee used in cases of returned checks due to insufficient funds. Format:
Dollars

Canceled Boolean Used internally

ConnectType String

FTPAddress String FTP address for check image upload.

FTPPassword String Password for access to image upload FTP

FTPUser String User ID for access to image upload FTP

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

OwnerCode String Owner code for image upload FTP

SalesBalance String The current Sales Balance

SalesCount String The current Sales Count

Truncation Boolean Flag that indicates whether check truncation / conversion will occur.

TruncationTID String

This is a unique identifier assigned by the merchant‘s bank or processor that

identifies the merchant. It will be in the format: site id–location id–rule set ,

where site id can be from 1 to 5 characters (numeric), location id can be from 1
to 6 characters (numeric), and rule set can be from 1 to 4 characters (numeric).

Example: 78-123456-9999 (dashes are necessary; no spaces).

VoidsBalance String The current Voids Balance

VoidsCount String The current Voids Count

PccEZCKSetup Methods

Method Name Returned Value Description - PccEZCKSetup Methods

CreateEZCKExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 413

PccFDCNSetup

This class contains FDMS Nashville / Envoy extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccFDCNSetup Properties

Property Name Data Type Description - PccFDCNSetup Properties

BatchNumber String
The Current batch number. This value is incremented by the processor after each
successful settlement.

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail

1 – Mail order

2 – Electronic commerce

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-Up

1 – First Data IPN (Datawire – TCP/IP)

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String

The Datawire ID. The value is provided to the merchant by their Merchant

Service Provider or Processing company. The DID is required to process
transactions via the Internet using the Datawire network. This value will be

unique for each merchant number used.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

MaxBatchSize String

Specifies the maximum number of transactions per batch that PCCharge will send

to the processor. If the number of transactions to be settled is greater than the
number specified in this setting, PCCharge will split the batch into multiple

batches, each containing (at most) the number transactions specified in this

setting. The batches are then sent to the processor one at a time. Example: A
merchant has 250 transaction to settle and the MaxBatchSize is set to 100.

PCCharge will send two 100-transaction batches and one 50-transaction batch.

Max Value: 999

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

SecondaryIP Boolean Used internally

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

PCCharge Version 5.9.0
Updated 2/8/2010

 414

Property Name Data Type Description - PccFDCNSetup Properties

URL2 String The Secondary Hostname, URL, or IP address used to connect to the processor

when processing via TCP/IP.

URLAddress String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PccFDCNSetup Methods

Method Name Returned Value Description - PccFDCNSetup Methods

CreateFDCNAdvanceFil

e
None Used internally

CreateFDCNExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK

after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 415

PccFDCSetup

This class contains FDMS Omaha / FDR extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccFDCSetup Properties

Property Name Data Type Description - PccFDCSetup Properties

AVS Boolean
Flag that indicates if merchant will use address verification when processing
transactions.

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail

1 – Mail order

2 – Electronic commerce

Canceled Boolean Used internally

Device String

Device Identification. This value is a merchant assigned code identifying the
device at the merchant‘s location. This field is required if there is one merchant

number assigned to more than one terminal at a merchant‘s location. Length: 4

characters

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String

The Datawire ID. The value is provided to the merchant by their Merchant

Service Provider or Processing company. The DID is required to process
transactions via the Internet using the Datawire network. This value will be

unique for each merchant number used.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

LBatch String
The Current batch number. This value is incremented by the processor after each
successful settlement.

LItem String Sequence number of the last transaction transmitted

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Prompt Boolean N/A

SecondaryIP Boolean Used internally

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

Sprint Boolean

Indicates whether to use the SprintNet network when processing transactions.

Note: The phone number to be dialed must be a SprintNet phone number. If this

option is enabled and the phone number is a direct FDMS Omaha / FDR phone
number, transactions will fail.

Valid values:

0 – Dial direct to FDMS Omaha / FDR
1 – Use SprintNet network

SprintAdd String The SprintNet address to be used if Sprint = TRUE.

TimeOut String The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

PCCharge Version 5.9.0
Updated 2/8/2010

 416

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String N/A

URL2 String N/A

URLAddress String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

PccFDCSetup Methods

Method Name Returned Value Description - PccFDCSetup Methods

CreateFDCExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 417

PccGiftCardSetup

This class contains information about the gift card company setup in the current instance of PCCharge.
This is a Multi Use class.

PccGiftCardSetup Properties

Property Name Data Type Description - PccGiftCardSetup Properties

Canceled Boolean Used internally

Company Integer Used internally

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

MerchantNumber String

The Merchant Number. This number is issued to the merchant by the Processor or

the Merchant Services Provider. Max Length: 32 characters. This value can be
alphanumeric.

PCCBBGFSetup PCCBBGFSetup Used internally

PccBPASSetup PccBPASSetup Provides extended setup information for FDMS Atlanta

PccBPSGiftSetup PccBPSGiftSetup Provides extended setup information for Fifth-Third Bank-St Pete

PccDMRKSetup PccDMRKSetup Provides extended setup information for Datamark Gift Card

PccGSARGiftSetup
PccGSARGiftSetu

p
Provides extended setup information for Chase Paymentech

PccGsarSetup PccGsarSetup Provides extended setup information for Chase Paymentech

PccGVEXSetup PccGVEXSetup Provides extended setup information for Givex

PccLYNKGiftSetup
PccLYNKGiftSetu

p
Provides extended setup information for RBS WorldPay, Inc.

PccMELLSetup PccMELLSetup Provides extended setup information for Mellennia

PCCSMTSSetup PCCSMTSSetup Provides extended setup information for Smart Transaction Systems

PCCSPSGiftSetup PCCSPSGiftSetup Provides extended setup information for Secure Payment Systems

PCCSVSISetup PCCSVSISetup Provides extended setup information for Stored Value Systems

PccVLNKSetup PccVLNKSetup Provides extended setup information for ValueLink

PccVTECSetup PccVTECSetup Provides extended setup information for Valutec

PccWRLDSetup PccWRLDSetup Provides extended setup information for World

PrimaryPhone String
The Primary number that will be used when processing transactions via dial-up
modem.

Processor String

The code for the processing company. This value can be no more than four

characters and must be capitalized. A list of valid processor codes are listed in

the Processing Company Codes section (see page 150).

SecondaryPhone String
The Secondary number that will be used when processing transactions via dial-up
modem.

PCCharge Version 5.9.0
Updated 2/8/2010

 418

PccGiftCardSetup Methods

Method Name Returned Value Description - PccGiftCardSetup Methods

CreateGCTFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

ProcessorSetup Object Used internally

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 419

PccGSARGiftSetup

This class contains Chase Paymentech Gift Card extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccGSARGiftSetup Properties

Property Name Data Type Description - PccGSARGiftSetup Properties

BatchNumber String
The Current batch number. This value is incremented by the processor after each
successful settlement.

BType Integer The merchant‘s business type. Valid values:

Canceled Boolean Used internally

Client String Client Number assigned by the merchant‘s bank or processor. Length: 4 digits

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP Leased Line

2 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

EDCType Integer Used internally

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are

processed using the PCCharge GUI.

gcBatchNumber String
The Current Gift Card batch number. This value is incremented by the processor
after each successful settlement.

gcClient String

Client Number assigned by the merchant‘s bank or processor for gift card

processing. Length: 4 digits. Note: This gift card specific property exists in case

the Chase Paymentech credit and gift card client numbers are different.

gcLastRRefNum String
Retrieval Reference Number. Used to identify and track the original transaction.
This value is assigned by the merchant‘s processor. Length: 8 digits

gcRequireClerkID String

Flag the indicates whether the Clerk ID is required when processing gift

transactions

Valid values:

0 – Clerk ID not required

1 – Clerk ID required

gcSeqNum String
The Gift Card sequence number. This number is automatically incremented after

every transaction.

GiftConnect Integer

Indicates method of connection to processor when processing gift cards.
Valid values:

0 – Dial-up

1 – TCP/IP Leased Line

2 – TCP/IP

GiftPassword String
The Password assigned by the merchant‘s bank or processor for TCP/IP

processing.

GiftPrimaryAuthIP String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

GiftPrimaryAuthPort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

GiftUsername String The Username assigned by the merchant‘s bank or processor for TCP/IP

processing.

PCCharge Version 5.9.0
Updated 2/8/2010

 420

Property Name Data Type Description - PccGSARGiftSetup Properties

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Password String
The Password assigned by the merchant‘s bank or processor for TCP/IP

processing.

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Port Long
The system/socket port used to connect to the processor when processing via

TCP/IP.

PrimaryAuthIP String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PrimaryAuthPort String The system/socket port used to connect to the processor when processing via

TCP/IP.

PrimarySettleIP String The Hostname, URL, or IP address used to connect to the processor when
performing settlement via TCP/IP.

PrimarySettlePort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more
information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SecondaryAuthIP String The secondary Hostname, URL, or IP address used to connect to the processor
when processing via TCP/IP.

SecondaryAuthPort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

SecondaryIP Boolean Used internally

SecondarySettleIP String The secondary Hostname, URL, or IP address used to connect to the processor
when performing settlement via TCP/IP.

SecondarySettlePort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Sequence String This field is for identifying transactions within the batch. Assigned by PCCharge

Length: 3 digits

SettlePort Long
The system/socket port used to connect to the processor when processing via

TCP/IP.

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

SettleURL String
The Hostname, URL, or IP address used to connect to the processor when

performing settlement via TCP/IP.

SIIP Boolean
The Service Industries Incentive Program indicator flag. Used to indicate

recurring payments for service industries such as insurance, telecom and utilities.

TimeOut String

The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Username String
The Username assigned by the merchant‘s bank or processor for TCP/IP

processing.

PCCharge Version 5.9.0
Updated 2/8/2010

 421

PccGSARGiftSetup Methods

Method Name Returned Value Description - PccGSARGiftSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowGiftCard Boolean

Shows a GUI form that allows the end-user to enter extended configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGiftCard.

PCCharge Version 5.9.0
Updated 2/8/2010

 422

PccGsarSetup

This class contains Chase Paymentech extended information for the current instance of PCCharge. This
is a Public Not Creatable class.

PccGsarSetupProperties

Property Name Data Type Description - PccGsarSetup Properties

BatchNumber String
The Current batch number. This value is incremented by the processor after each
successful settlement.

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail

1 – Mail order

2 – Electronic commerce

4 – Restaurant

Canceled Boolean Used internally

Client String Client Number assigned by the merchant‘s bank or processor. Length: 4 digits

Connect String

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP Leased Line

2 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

EDCType Integer Used internally

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are

processed using the PCCharge GUI.

gcBatchNumber String
The Current Gift Card batch number. This value is incremented by the processor
after each successful settlement.

gcClient String

Client Number assigned by the merchant‘s bank or processor for gift card

processing. Length: 4 digits. Note: This gift card specific property exists in case

the Chase Paymentech credit and gift card client numbers are different.

gcLastRRefNum String
Retrieval Reference Number. Used to identify and track the original transaction.
This value is assigned by the merchant‘s processor. Length: 8 digits

gcRequireClerkID String

Flag the indicates whether the Clerk ID is required when processing gift

transactions

Valid values:

0 – Clerk ID not required

1 – Clerk ID required

gcSeqNum String
The Gift Card sequence number. This number is automatically incremented after

every transaction.

GiftConnect Integer

Indicates method of connection to processor when processing gift cards.
Valid values:

0 – Dial-up

1 – TCP/IP Leased Line

2 – TCP/IP

GiftPassword String The Password assigned by the merchant‘s bank or processor for TCP/IP

processing.

GiftPrimaryAuthIP String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

GiftPrimaryAuthPort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

GiftUsername String The Username assigned by the merchant‘s bank or processor for TCP/IP

processing.

PCCharge Version 5.9.0
Updated 2/8/2010

 423

Property Name Data Type Description - PccGsarSetup Properties

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Password String
The Password assigned by the merchant‘s bank or processor for TCP/IP

processing.

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

PrimaryAuthIP String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PrimaryAuthPort String The system/socket port used to connect to the processor when processing via

TCP/IP.

PrimarySettleIP String The Hostname, URL, or IP address used to connect to the processor when
performing settlement via TCP/IP.

PrimarySettlePort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more
information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SecondaryAuthIP String The secondary Hostname, URL, or IP address used to connect to the processor
when processing via TCP/IP.

SecondaryAuthPort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

SecondaryIP Boolean Used internally

SecondarySettleIP String The secondary Hostname, URL, or IP address used to connect to the processor
when performing settlement via TCP/IP.

SecondarySettlePort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Sequence String This field is for identifying transactions within the batch. Assigned by PCCharge

Length: 3 digits

SettlePort Long
The system/socket port used to connect to the processor when processing via

TCP/IP.

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

SettleURL String
The Hostname, URL, or IP address used to connect to the processor when

performing settlement via TCP/IP.

SIIP Boolean
The Service Industries Incentive Program indicator flag. Used to indicate

recurring payments for service industries such as insurance, telecom and utilities.

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Username String
The Username assigned by the merchant‘s bank or processor for TCP/IP

processing.

PCCharge Version 5.9.0
Updated 2/8/2010

 424

PccGsarSetup Methods

Method Name Returned Value Description - PccGsarSetup Methods

CreateGSARExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowGiftCard Boolean

Shows a GUI form that allows the end-user to enter extended configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGiftCard.

PCCharge Version 5.9.0
Updated 2/8/2010

 425

PccGVEXSetup

This class contains Givex extended information for the current instance of PCCharge. This is a Public
Not Creatable class.

PccGVEXetup Properties

Property Name Data Type Description - PccGVEXetup Properties

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Language String
Language Code. Valid values:

0 – English (default)

Pin String Personal identification number issued to merchant by processor

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Serial String Used internally

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

TrackPoints Boolean

Flag that indicates whether to use Points transactions. The Points service is used

for tracking points in a points program. The merchant sends information on the

card used and the amount of the transaction. This information is stored and is
made available later.

URL String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

UseUnits Boolean

Flag that indicates whether to use units in conjunction with Points transactions.
The points value is entered by the merchant and is tracked by the Givex system

for the points program. Points could be the total number of items or some

calculated unit value or anything else defined by the user. This can be used later

when calculating the value to add to the card.

PCCharge Version 5.9.0
Updated 2/8/2010

 426

PccGVEXSetup Methods

Method Name Returned Value Description - PccGVEXSetup Methods

CreateGVEXExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowGC Boolean

Shows a GUI form that allows the end-user to enter extended or advanced Gift

Card configuration information such as the business type, communication method,

or other related settings. Returns TRUE if successful, FALSE otherwise. Note: If

the end-user clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGC.

PCCharge Version 5.9.0
Updated 2/8/2010

 427

PccHPTSSetup

This class contains Heartland Payment Systems extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccHPTSSetup Properties

Property Name Data Type Description - PccHPTSSetup Properties

ABA String
The ABA number identifies the merchant to a direct debit switch. Applicable for
Debit/EBT transactions. This value is provided to the merchant by their Merchant

Services Provider or Processor. Length: 9 digits

Agent String

The Agent Bank Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific agent entity of the member bank or
processor. Length: 6 digits. Example: 111111

AuthPrimaryPort String N/A

AuthPrimaryURL String N/A

Batch String
The Current batch number. This value is incremented by the processor after each

successful settlement.

Bin String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

BType Integer

The merchant‘s business type.

Valid values:
0 – Retail

1 – Mail order

4 – Restaurant

Canceled Boolean Used internally

Category String

The Merchant Category Code assigned by the merchant‘s bank or processor. This

parameter is used to identify the merchant‘s industry classification. Length: 4

digits. Example: 5999

Chain String
The Agent Chain Number issued by the merchant‘s bank or processor. This
parameter is used to identify a specific chain of an agent organization. Length: 6

digits. Example: 000000

City String
The merchant‘s postal/zip code as assigned by the merchant‘s bank or processor.

Length: 5 or 9 digits. Example: 314193262

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-up

1 – TCP/IP

Country String

The Country Code assigned by the merchant‘s bank or processor. This parameter
is used to identify the merchant‘s country location. Length: 3 digits. Valid

Value: 840 – U.S.

CreditTermType
CreditTerminalTy
pe

N/A

CSPhone String

The Merchant Local Telephone Number. Length: 11 characters. Format: NNN-

nnnnnnn where NNN is the area code and nnnnnnn is the telephone number. The

hyphen is required. Example: 800-7259264

CurrencyCode String

The Currency Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

DebitBIN String

The Bank Identification Number issued by the merchant‘s bank or processor. The

BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

DebitTermType
CreditTerminalTy
pe

N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 428

Property Name Data Type Description - PccHPTSSetup Properties

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String N/A

ebtABA String N/A

ebtBIN String N/A

ebtFCSID String N/A

ebtReimbursement String N/A

ebtSettleAgent String N/A

ebtSharingGroup String N/A

EBTTermType
DebitTerminalTy

pe
N/A

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

ExpressPay Boolean

Express Pay flag. This setting only applies if the Business Type is set to retail. If

this flag is set to TRUE and the amount of the transaction is less than the

FloorLimit amount, PCCharge will not authorize the transaction—it will only
place the transaction in the open batch. Express Pay is usually used in a quick

service environment with small ticket items. Note: Using Express Pay will

increase transaction processing costs.

FloorLimit String
The floor limit amount. This setting is only applicable if the Business Type is set
to retail. The floor limit is the maximum transaction amount that will be

accepted by PCCharge when processing an Express Pay transaction

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Language String

Language indicator. Length: 2 digits. Valid Values:

00 – English

01 – Spanish

02 – Portuguese

03 – Reserved for Irish

04 – Reserved for French

05 – Reserved for German

06 – Reserved for Italian

07 – Reserved for Dutch

Location String

The Merchant Location Number provides additional information on the location of

the merchant. Length: 5 characters. Example: 00001 Note: This value should be

00001 unless otherwise specified by the merchant‘s bank or processor.

MaxBatchSize String

Specifies the maximum number of transactions per batch that PCCharge will send

to the processor. If the number of transactions to be settled is greater than the

number specified in this setting, PCCharge will split the batch into multiple

batches, each containing (at most) the number transactions specified in this
setting. The batches are then sent to the processor one at a time. Example: A

merchant has 250 transaction to settle and the MaxBatchSize is set to 100.

PCCharge will send two 100-transaction batches and one 50-transaction batch.
Max Value: 999

MCReversal Boolean N/A

PCard Boolean N/A

Phone1 String

Primary phone number for settlement. If this value is set and Dial-up modem is

the communication method, PCCharge will attempt to settle transactions using
this phone number rather than the authorization phone number.

PCCharge Version 5.9.0
Updated 2/8/2010

 429

Property Name Data Type Description - PccHPTSSetup Properties

Phone2 String

Secondary phone number for settlement. If this value is set and Dial-up modem is

the communication method, PCCharge will attempt to settle transactions using
this phone number rather than the authorization phone number.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Reimbursement String

The Reimbursement Attribute designates the Reimbursement Fee applicable to a

transaction. Applicable for Debit/EBT transactions. This value is assigned to the
merchant by their Merchant Services Provider or Processor. Length: 1 character.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SettleAgent String
The Merchant Settlement Agent Number identifies the merchant settling agent.

Applicable for Debit/EBT transactions. This value is provided to the merchant by
their Merchant Services Provider or Processor. Length: 4 characters

SettleConnect String N/A

SettleDialBackUp String N/A

SettleMaxBlockCount String N/A

SettleMaxBlockSize String N/A

SettlePrimaryPort String N/A

SettlePrimaryURL String N/A

SettleTCP Boolean N/A

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

SharingGroup String

The Sharing Group contains a listing of direct debit and EBT networks that may be
accessed. This value is provided to the merchant by their Merchant Services

Provider or Processor. The values must correspond to one of the Visa assigned

direct debit network types. This data is part of the VisaNet direct debit data.
Length: 1 to 30 characters.

Store String

The Store Number assigned by the merchant‘s bank or processor. This parameter

is used to identify a specific merchant store location. Length: 4 digits. Example:

0011

Terminal String
The Terminal Number assigned by the merchant‘s bank or processor. This
parameter is used to identify a specific store terminal. Length: 4 digits.

Example: 9911.

TID String N/A

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

TimeZone String

The Time Zone Differential as assigned by the merchant‘s bank or processor. This

value provides the standard local time zone differential from Greenwich Mean

Time (GMT). Length: 3 digits. Valid Values:

705 – Eastern

706 – Central

707 – Mountain

708 – Pacific

Note: Replace the leading 7 with a 1 if Daylight Savings is not observed.

Example: 107 – Arizona

URL String N/A

URL2 String N/A

VSReversal Boolean N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 430

PccHPTSSetup Methods

Method Name Returned Value Description - PccHPTSSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

ShowEBT Boolean

Shows a GUI form that allows the end-user to enter EBT configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowEBT.

PCCharge Version 5.9.0
Updated 2/8/2010

 431

PccImpSetup

This class contains information about the Import File setup in the current instance of PCCharge. This is
a Multi Use class.

PccImpSetup Properties

Property Name Data Type Description - PccImpSetup Properties

APPAVS Boolean Indicates whether to include AVS responses in .app files

BADAVS Boolean Indicates whether to include AVS responses in .bad files

Canceled Boolean Used internally

CustName Boolean Indicates whether to include customer name in import files

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

PCardInfo Boolean
Indicates whether to include commercial / purchasing card information in import
files

PccImpSetup Methods

Method Name Returned Value Description - PccImpSetup Methods

CreateImportFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 432

PccLYNKGiftSetup

PccLYNKGiftSetup Properties

Property Name Data Type Description - PccLYNKGiftSetup Properties

Bank String

The Agent Bank Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific agent entity of the member bank or
processor. Length: 6 digits. Example: 111111

Batch String
The Current batch number. This value is incremented by the processor after each

successful settlement.

Bin String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

BType String N/A

Canceled Boolean Used internally

Category String
The Merchant Category Code assigned by the merchant‘s bank or processor. This
parameter is used to identify the merchant‘s industry classification. Length: 4

digits. Example: 5999

Chain String
The Agent Chain Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific chain of an agent organization. Length: 6
digits. Example: 000000

City String
The merchant‘s postal/zip code as assigned by the merchant‘s bank or processor.

Length: 5 or 9 digits. Example: 314193262

CompanyCity String The merchant‘s postal/zip code as assigned by the merchant‘s bank or processor.

Length: 5 or 9 digits. Example: 314193262

CompanyName String The merchant‘s name as assigned by the merchant‘s bank or processor.

CompanyState String
The merchant‘s state abbreviation as assigned by the merchant‘s bank or

processor.

Connect Integer N/A

Country String

The Country Code assigned by the merchant‘s bank or processor. This parameter
is used to identify the merchant‘s country location. Length: 3 digits. Valid

Value: 840 – U.S.

CSPhone String
The Merchant Local Telephone Number. Length: 11 characters. Format: NNN-
nnnnnnn where NNN is the area code and nnnnnnn is the telephone number. The

hyphen is required. Example: 800-7259264

CurrencyCode String

The Currency Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

DialBackup Boolean N/A

Expansion String N/A

GiftConnect Integer N/A

GiftDialBackup Boolean N/A

GiftPort String N/A

GiftSettleTimeOut String N/A

GiftTimeOut Integer N/A

GiftURL String N/A

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

PCCharge Version 5.9.0
Updated 2/8/2010

 433

Property Name Data Type Description - PccLYNKGiftSetup Properties

Language String

Language indicator. Length: 2 digits. Valid Values:

00 – English

01 – Spanish

02 – Portuguese

03 – Reserved for Irish

04 – Reserved for French

05 – Reserved for German

06 – Reserved for Italian

07 – Reserved for Dutch

Location String N/A

Phone1 String N/A

Phone2 String N/A

Port String N/A

SettleTimeOut String N/A

Store String
The Store Number assigned by the merchant‘s bank or processor. This parameter
is used to identify a specific merchant store location. Length: 4 digits. Example:

0011

Terminal String

The Terminal Number assigned by the merchant‘s bank or processor. This

parameter is used to identify a specific store terminal. Length: 4 digits.
Example: 9911.

TimeOut Integer N/A

TimeZone String

The Time Zone Differential as assigned by the merchant‘s bank or processor. This

value provides the standard local time zone differential from Greenwich Mean

Time (GMT). Length: 3 digits. Valid Values:

705 – Eastern

706 – Central

707 – Mountain

708 – Pacific
Note: Replace the leading 7 with a 1 if Daylight Savings is not observed.

Example: 107 – Arizona

URL String N/A

PccLYNKGiftSetup Methods

Method Name Returned Value Description - PccLYNKGiftSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK

after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ValidateExt Boolean N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 434

PccLYNKSetup

This class contains RBS WorldPay extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccLYNKSetup Properties

Property Name Data Type Description - PccLYNKSetup Properties

ABA String
The ABA number identifies the merchant to a direct debit switch. Applicable for
Debit/EBT transactions. This value is provided to the merchant by their Merchant

Services Provider or Processor. Length: 9 digits

Agent String
The Agent Bank Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific agent entity of the member bank or
processor. Length: 6 digits. Example: 111111

AuthPrimaryPort String N/A

AuthPrimaryURL String N/A

Batch String The Current batch number. This value is incremented by the processor after each

successful settlement.

Bin String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

BType Integer

The merchant‘s business type.

Valid values:
0 – Retail

1 – Mail order

4 – Restaurant

Canceled Boolean Used internally

Category String

The Merchant Category Code assigned by the merchant‘s bank or processor. This

parameter is used to identify the merchant‘s industry classification. Length: 4

digits. Example: 5999

Chain String
The Agent Chain Number issued by the merchant‘s bank or processor. This
parameter is used to identify a specific chain of an agent organization. Length: 6

digits. Example: 000000

City String The merchant‘s postal/zip code as assigned by the merchant‘s bank or processor.

Length: 5 or 9 digits. Example: 314193262

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-up

1 – ISDN

2 – TCP/IP

Country String
The Country Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s country location. Length: 3 digits. Valid

Value: 840 – U.S.

CreditTermType
CreditTerminalTy

pe
N/A

CSPhone String
The Merchant Local Telephone Number. Length: 11 characters. Format: NNN-
nnnnnnn where NNN is the area code and nnnnnnn is the telephone number. The

hyphen is required. Example: 800-7259264

CurrencyCode String
The Currency Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

DebitBIN String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

DebitTermType
CreditTerminalTy

pe
N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 435

Property Name Data Type Description - PccLYNKSetup Properties

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String N/A

ebtABA String N/A

ebtBIN String N/A

ebtFCSID String N/A

ebtReimbursement String N/A

ebtSettleAgent String N/A

ebtSharingGroup String N/A

EBTTermType
DebitTerminalTy

pe
N/A

ExpansionFactor String
Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

ExpressPay Boolean

Express Pay flag. This setting only applies if the Business Type is set to retail. If

this flag is set to TRUE and the amount of the transaction is less than the

FloorLimit amount, PCCharge will not authorize the transaction—it will only
place the transaction in the open batch. Express Pay is usually used in a quick

service environment with small ticket items. Note: Using Express Pay will

increase transaction processing costs.

FloorLimit String
The floor limit amount. This setting is only applicable if the Business Type is set
to retail. The floor limit is the maximum transaction amount that will be

accepted by PCCharge when processing an Express Pay transaction

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Language String

Language indicator. Length: 2 digits. Valid Values:

00 – English

01 – Spanish

02 – Portuguese

03 – Reserved for Irish

04 – Reserved for French

05 – Reserved for German

06 – Reserved for Italian

07 – Reserved for Dutch

Location String
The Merchant Location Number provides additional information on the location of

the merchant. Length: 5 characters. Example: 00001 Note: This value should be

00001 unless otherwise specified by the merchant‘s bank or processor.

MaxBatchSize String

Specifies the maximum number of transactions per batch that PCCharge will send

to the processor. If the number of transactions to be settled is greater than the

number specified in this setting, PCCharge will split the batch into multiple

batches, each containing (at most) the number transactions specified in this
setting. The batches are then sent to the processor one at a time. Example: A

merchant has 250 transaction to settle and the MaxBatchSize is set to 100.

PCCharge will send two 100-transaction batches and one 50-transaction batch.
Max Value: 999

MCReversal Boolean N/A

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

PCCharge Version 5.9.0
Updated 2/8/2010

 436

Property Name Data Type Description - PccLYNKSetup Properties

PccVisaSetup_ebtFCSI

D
String Used internally

Phone1 String
Primary phone number for settlement. If this value is set and Dial-up modem is
the communication method, PCCharge will attempt to settle transactions using

this phone number rather than the authorization phone number.

Phone2 String
Secondary phone number for settlement. If this value is set and Dial-up modem is

the communication method, PCCharge will attempt to settle transactions using
this phone number rather than the authorization phone number.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Reimbursement String
The Reimbursement Attribute designates the Reimbursement Fee applicable to a

transaction. Applicable for Debit/EBT transactions. This value is assigned to the
merchant by their Merchant Services Provider or Processor. Length: 1 character.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SettleAgent String
The Merchant Settlement Agent Number identifies the merchant settling agent.

Applicable for Debit/EBT transactions. This value is provided to the merchant by
their Merchant Services Provider or Processor. Length: 4 characters

SettleConnect String N/A

SettleDialBackUp String N/A

SettleMaxBlockCount String N/A

SettleMaxBlockSize String N/A

SettlePrimaryPort String N/A

SettlePrimaryURL String N/A

SettleTCP Boolean N/A

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

SharingGroup String

The Sharing Group contains a listing of direct debit and EBT networks that may be
accessed. This value is provided to the merchant by their Merchant Services

Provider or Processor. The values must correspond to one of the Visa assigned

direct debit network types. This data is part of the VisaNet direct debit data.
Length: 1 to 30 characters.

Store String
The Store Number assigned by the merchant‘s bank or processor. This parameter

is used to identify a specific merchant store location. Length: 4 digits. Example:

0011

Terminal String
The Terminal Number assigned by the merchant‘s bank or processor. This
parameter is used to identify a specific store terminal. Length: 4 digits.

Example: 9911.

TID String N/A

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

TimeZone String

The Time Zone Differential as assigned by the merchant‘s bank or processor. This

value provides the standard local time zone differential from Greenwich Mean

Time (GMT). Length: 3 digits. Valid Values:

705 – Eastern

706 – Central

707 – Mountain

708 – Pacific

Note: Replace the leading 7 with a 1 if Daylight Savings is not observed.

Example: 107 – Arizona

URL String N/A

URL2 String N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 437

Property Name Data Type Description - PccLYNKSetup Properties

VSReversal Boolean Indicates whether VISA reversals will be processed.

PccLYNKSetup Methods

Method Name Returned Value Description - PccLYNKSetup Methods

CreateLYNKAdvanceFil

e
None Used internally

CreateLynkDebitExtFi

le
None Used internally

CreateLynkExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

PccVisaSetup_CreateV

isaDebitExtFile
None Used internally

PccVisaSetup_CreateV

isaExtFile
None Used internally

PccVisaSetup_CreateV

isaIPNExtFile
None Used internally

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

ShowEBT Boolean

Shows a GUI form that allows the end-user to enter EBT configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowEBT.

PCCharge Version 5.9.0
Updated 2/8/2010

 438

 PccMELLSetup

This class contains Mellennia extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccMELLSetup Properties

Property Name Data Type Description - PccMELLSetup Properties

BType String

The merchant‘s business type. Valid values:

0 – Restaurant

1 – Other

Canceled Boolean Used internally

Connect Integer N/A

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

RequireClerkID String

Indicates whether the Server ID needs to be filled for a transaction to completed.

Valid Values:

0 – Not required

1 – Required

PccMELLSetup Methods

Method Name Returned Value Description - PccMELLSetup Methods

CreateMELLExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowGC Boolean

Shows a GUI form that allows the end-user to enter extended or advanced Gift

Card configuration information such as the business type, communication method,

or other related settings. Returns TRUE if successful, FALSE otherwise. Note: If

the end-user clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGC.

PCCharge Version 5.9.0
Updated 2/8/2010

 439

PccModem

This class allows modem configuration.

Note: This class can only be accessed through the PccActiveCharge class. Restricting its instantiation

eliminates the possibility of multiple instancing. See the following code fragment.

'In Declare section:

Dim clsActiveCharge As ActiveCharge.PccActiveCharge

Dim WithEvents clsModem As ActiveCharge.PccModem

'In Implementation section:

Set clsActiveCharge = New ActiveCharge.PccActiveCharge

Set clsModem = clsActiveCharge.PccModem

With clsModem

 .Load

 .Validate ("AT")

 End With

„Once OnUpdate event fires:

 MsgBox Status

This is a Public Not Creatable class.

PccModem Properties

Property Name Data Type Description - PccModem Properties

Baud String The baud rate (300, 1200).

Canceled Boolean Used internally

CFGFile Collection
Allows viewing the modem strings contained in the MODEM.CFG file. Requires the
index number of the modem string as a parameter.

DialBackup Boolean N/A

DialMethod String

The dial method. Valid values:

T – Tone

P – Pulse

DialPrefix String The dial prefix. Example: ,9

DialString String Used internally

EncLogFile Boolean

Flag that indicates whether to encrypt the communication log file. This option

should be set to TRUE if providing the communication log file to VeriFone, Inc.‘s
technical support department.

Index Integer N/A

InitString String The modem initialization string

LogFile Boolean Flag that indicates whether to create a communications log file.

LogFileBacking Boolean Flag that indicates whether to create a backup of the communications log file.

ModemType String Name of the modem initialization string

Port Integer Specifies COM port used for modem connection

PurgeSize Long Specifies the size limit of the communications log to begin purging. Format: KB

RespDelay String
The Response delay used when dialing. This value should be increased if

experiencing problems with WinModems. Format: seconds

TAPIFriendlyName** String Name of modem as listed by TAPI drivers

TAPIIndex** Integer Which modem to use as specified by local machine TAPI modem index

PCCharge Version 5.9.0
Updated 2/8/2010

 440

Property Name Data Type Description - PccModem Properties

TAPIUseDefaultSettin

gs
Boolean Flag that indicates to use the Windows modem settings

UseISDN Boolean N/A

UseTAPI Boolean Indicates whether to use TAPI for modem connection

WinModem Boolean
Flag that indicates whether to re-initialize the modem before each transaction.

Activating this setting fixes issues with some WinModems.

** To use these properties, UseTapi must be set to TRUE.

PccModem Methods

Method Name Returned Value Description - PccModem Methods

Cancel Boolean
The Cancel method attempts to cancel the test transaction in progress. Calling

the Cancel method does not guarantee that the test transaction will be
canceled; it simply attempts to cancel the test transaction.

CreateModemFile None Used internally

GetBaud String Used internally

GetOK Boolean Used internally

GetPort Integer Used internally

InitModem Boolean Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

PccTest Boolean

PccTest runs a transaction test using the currently selected merchant number

and communication type. PccTest can test either TCP/IP or dial-up

communication—it tests whichever communication method is selected in the
extended configuration of the currently selected merchant number.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

SetBaud Integer Used internally

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

TAPIGetModemCount Integer Used internally

TAPIGetModemIndex Integer Used internally

TAPIGetModemName String Used internally

Validate Boolean

Validates a modem initialization string. This method requires a modem

initialization string to be passed as a parameter. This method passes each portion

of the initialization string to the modem. If the modem responds to a portion

with an OK response, that portion is kept. If the modem responds to a portion

with an ERROR response, that portion is discarded. The method then constructs a
new modem initialization string with the remaining kept portions and places that

string in the InitString property. TRUE is returned if the operation is

successful, FALSE otherwise.

PccModem Events

Method Name Returned Value Description - PccModem Methods

OnUpdate Boolean

The OnUpdate event will fire when the PccModem class provides status

messages. Once the ActionUpdate event has fired the Status value is set with

the current status message provided by the PccModem class.

PCCharge Version 5.9.0
Updated 2/8/2010

 441

PccNBSetup

This class contains FDMS South / NaBanco merchant number extended information for the current
instance of PCCharge. This is a Public Not Creatable class.

PccNBSetup Properties

Property Name Data Type Description - PccNBSetup Properties

Address1 String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Address2 String
The secondary Hostname, URL, or IP address used to connect to the processor
when processing via TCP/IP.

AMEX String American Express service establishment number. Length: 9 or10 digits

BatchNumber String
The Current batch number. This value is incremented by the processor after each

successful settlement.

BatchSerial String
Unique Terminal Serial Number for the current merchant number. Length: 2
digits.

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail

1 – Mail Order

4 – Restaurant

Canceled Boolean Used internally

Carte String Carte Blanche service establishment number. Length: 10 digits

Category String
The Merchant Category Code assigned by the merchant‘s bank or processor. This
parameter is used to identify the merchant‘s industry classification. Length: 4

digits. Example: 5999

Connect String

Indicates method of connection to processor.
Valid values:

0 = dial-up

1 – TCP/IP Lease Line

2 = First Data IPN (Datawire – TCP/IP)

Country String

The Country Code assigned by the merchant‘s bank or processor. This parameter
is used to identify the merchant‘s country location. Length: 3 digits. Valid

Value: 840 – U.S.

DebitDID String

The Datawire ID. The value is provided to the merchant by their Merchant
Service Provider or Processing company. The DID is required to process

transactions via the Internet using the Datawire network. This value will be

unique for each merchant number used.

DebitSalesCount String Count of Debit Sales

DebitTotalSalesAmt String Total amount of Debit Sales

DialBackup String

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String

The Datawire ID. The value is provided to the merchant by their Merchant
Service Provider or Processing company. The DID is required to process

transactions via the Internet using the Datawire network. This value will be

unique for each merchant number used.

Diners String Diner‘s Club service establishment number. Length: 10 digits

Discover String Discover service establishment number. Length: 10 digits

ExpansionFactor String
Percent by which restaurant-based transactions will be incremented during
gratuity-related transactions. This setting only applies when transactions are

processed using the PCCharge GUI.

PCCharge Version 5.9.0
Updated 2/8/2010

 442

Property Name Data Type Description - PccNBSetup Properties

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

JAL String JAL service establishment number. Length: 10 digits

JCB String JCB service establishment number. Length: 10 digits

Mastercard Boolean N/A

MaxBatchSize String

Specifies the maximum number of transactions per batch that PCCharge will send

to the processor. If the number of transactions to be settled is greater than the

number specified in this setting, PCCharge will split the batch into multiple

batches, each containing (at most) the number transactions specified in this
setting. The batches are then sent to the processor one at a time. Example: A

merchant has 250 transaction to settle and the MaxBatchSize is set to 100.

PCCharge will send two 100-transaction batches and one 50-transaction batch.
Max Value: 999

MCI Boolean
Indicates whether merchant is using the MCI dialing option rather than a direct

connection to the processor.

PCard String

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Port1 String
The system/socket port used to connect to the processor when processing via
TCP/IP.

Port2 String
The secondary system/socket port used to connect to the processor when

processing via TCP/IP.

ProcessingDebit Boolean Used internally

Qual String
The Qual code identifies the merchant‘s plan code and types cards that are
accepted. This value is assigned by the merchant‘s bank or processor. Length: 6

digits.

ReceiptNumber String Used internally

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related
restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SecondaryIP Boolean Used internally

Serial String
Unique Terminal Serial Number for the current merchant number. Length: 2

digits.

SerialNumber String N/A

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

SICCode String

The Merchant Category Code assigned by the merchant‘s bank or processor. This

parameter is used to identify the merchant‘s industry classification. Length: 4

digits. Example: 5999

State String

The State Code This value is provided to the merchant by their Merchant Service

Provider or Processing company. This value identifies the merchant‘s. Length: 2

digits

TermID String Used internally

Timeout String Timeout value for leased-line connectivity. Valid range: 1-45 (seconds)

PCCharge Version 5.9.0
Updated 2/8/2010

 443

Property Name Data Type Description - PccNBSetup Properties

URL String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Visa Boolean N/A

Zip String The merchant‘s zip code

PccNBSetup Methods

Method Name Returned Value Description - PccNBSetup Methods

CreateNBExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

PCCharge Version 5.9.0
Updated 2/8/2010

 444

PccNBSSetup

This class contains National Bankcard Services merchant number extended information for the current
instance of PCCharge. This is a Public Not Creatable class.

PccNBSSetup Properties

Property Name Data Type Description - PccNBSSetup Properties

AcceptVMCFleet

String

The setting to accept Visa/MC Fleet Cards.
Valid Values:

0 = No

1 = Yes

BatchNumber String The batch number.

BType String
The business type. Currently, NBS only supports retail.
Valid Values:

0 = Retail

CATType String

The CAT setting.

Valid Values:
0 = No

1 = Yes

Connect String

The connection type.

Valid Values:
0 = Dial

1 = Datawire

DebitCATType String

The debit CAT setting.

Valid Values:
0 = No

1 = Yes

DID String The Datawire ID.

DialBackup String

The dial backup indicator.
Valid Values:

0 = No

1 = Yes

EnableProductDetail String

The setting to enabled Product Details. Note: Must be checked if Fleet Cards will
be accepted.

Valid Values:

0 = No
1 = Yes

LoggedOn String Indicator used for logging into the NBS system.

MaxBatchSize String The maximum batch size.

PCard String

The PCard (commercial card) acceptance setting.

Valid Values:
0 = No

1 = Yes

RegistrationURL String The URL for Datawire registration. This is defaulted in PCCharge.

SecondaryURL String The secondary Datawire URL. This is defaulted in PCCharge.

SettleTimeout String The settlement timeout value. The default value is 240 seconds.

TimeOut String The authorization timeout value. The default value is 60 seconds.

TimeZone String

The time zone. This is the offset from GMT. This is in the format HHMM for the

first four digits, and the last digit is the Daylight Savings Time indicator (0 = No, 1
= Yes).

URL String The primary Datawire URL. This is defaulted in PCCharge.

PCCharge Version 5.9.0
Updated 2/8/2010

 445

PccNBSSetup Methods

Method Name
Returned

Value
Description - PccNBSSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

GetDefaultURL String Returns the default Datawire URL.

GetDefaultRegistrationURL String Returns the default registration URL.

PCCharge Version 5.9.0
Updated 2/8/2010

 446

PccNDCSetup

This class contains Global Payments-East extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccNDCSetup Properties

Property Name Data Type Description - PccNDCSetup Properties

BankID String The Bank ID assigned by the merchant‘s bank or processor. Length: 6 digits.

BatchAmount String Balance of current batch

BatchNumber String
The Current batch number. This value is incremented by the processor after each

successful settlement.

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail

1 – Mail Order

2 – E-Commerce

4 – Restaurant

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-up

1 – TCP/IP

DataPack Boolean
Flag that indicates if the DataPac Communications Network will be used to

connect to the processor. Set to TRUE if connecting to the processor in Canada.

DebitPurchaseAmount String Amount of debit purchases.

DebitPurchaseCount String Number of debit purchases.

DebitReturnAmount String Amount of debit returns.

DebitReturnCount String Number of debit returns.

Duplicate String

Used only for Canadian Debit Transactions. Determines if duplicate transactions
are allowed with processing Canadian debit transactions. See the section

Canadian (Interac) Debit Transactions (see page 112) for more information.

Valid Values:

0 – Do not allow Duplicate transactions

1 – Allow Duplicate transactions

EDCType String Used internally

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

ItemCount String Number of transactions in current batch

Location String

The Merchant Location Number provides additional information on the location of

the merchant. Length: 5 characters. Example: 00001 Note: This value should be

00001 unless otherwise specified by the merchant‘s bank or processor.

Manual Boolean Indicates whether batches will be manually opened and closed

MerchantType String N/A

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

PurchaseAmt String Amount of sale or post-authorization transactions

PurchaseCount String Number of sale or post-authorization transactions

PCCharge Version 5.9.0
Updated 2/8/2010

 447

Property Name Data Type Description - PccNDCSetup Properties

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more
information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

ReturnAmt String Amount of credits

ReturnCount String Number of credits

SecondaryIP Boolean Used internally

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement
operation to time out before attempting the settlement via dial Format:

Seconds

Sprint Boolean
Flag that indicates if SprintNet will be used to connect to the processor. Set to

TRUE if connecting to SprintNet.

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

TipPercent String

Used only for Canadian Debit Transactions. The percentage of tip that will be

displayed on the PINpad. See the section Canadian (Interac) Debit Transactions

(see page 112) for more information.

TipType String
Used only for Canadian Debit Transactions. The type of tip calculation that will
occur. See the section Canadian (Interac) Debit Transactions (see page 112) for

more information.

TranItem String Current transaction item number

URL String N/A

URL2 String N/A

URLAddress String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PccNDCSetup Methods

Method Name Returned Value Description - PccNDCSetup Methods

CreateNDCExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 448

Method Name Returned Value Description - PccNDCSetup Methods

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

PccNovaSetup

This class contains Elavon (NOVA) extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccNovaSetup Properties

Property Name Data Type Description - PccNovaSetup Properties

Balance String Balance of current batch

BankID String The Bank ID assigned by the merchant‘s bank or processor. Length: 6 digits.

BatchNumber String
The Current batch number. This value is incremented by the processor after each
successful settlement.

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail

1 – Mail order

2 – Electronic Commerce

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

Counter String The record count (The number of transactions in the batch)

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

EDCType Integer

Flag that indicates whether processing will occur on Elavon‘s (NOVA) host-based
system or the terminal-based system. This setting must match what Elavon

(NOVA) has set up for the merchant (i.e. a Elavon (NOVA) terminal-based

merchant account will not work on the host-based system)

Valid values:

0 – Host

1 – Terminal

HostName String
The Hostname, URL, or IP address used to connect to Elavon‘s (NOVA) Test

System when processing via TCP/IP.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IPDebug Boolean N/A

IPTest Boolean

Flag that indicates whether to send transactions to Elavon‘s (NOVA) test system
or to the live system.

TRUE – Send to Elavon‘s (NOVA) Test System

FALSE – Send to Elavon‘s (NOVA) live system

Manual Boolean Indicates whether batches will be manually opened and closed

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields
(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

PCCharge Version 5.9.0
Updated 2/8/2010

 449

Sequence String N/A

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time

out before attempting the transaction via dial Format: Seconds

PccNovaSetup Methods

Method Name Returned Value Description - PccNovaSetup Methods

CreateNOVAExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 450

PccNPCSetup

This class contains National Processing Company extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccNPCSetup Properties

Property Name Data Type Description - PccNPCSetup Properties

ABA String
The ABA number identifies the merchant to a direct debit switch. Applicable for
Debit/EBT transactions. This value is provided to the merchant by their Merchant

Services Provider or Processor. Length: 9 digits

Agent String
The Agent Bank Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific agent entity of the member bank or
processor. Length: 6 digits. Example: 111111

AuthPrimaryPort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

AuthPrimaryURL String The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

Batch String
The Current batch number. This value is incremented by the processor after each

successful settlement.

Bin String

The Bank Identification Number issued by the merchant‘s bank or processor. The

BIN identifies the Merchant Service Provider that signed up the merchant.
Length: 6 digits. Example: 999995

BType Integer

The merchant‘s business type.

Valid values:

0 – Retail
1 – Mail order

2 – Electronic Commerce

Canceled Boolean Used internally

Category String

The Merchant Category Code assigned by the merchant‘s bank or processor. This

parameter is used to identify the merchant‘s industry classification. Length: 4
digits. Example: 5999

Chain String

The Agent Chain Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific chain of an agent organization. Length: 6

digits. Example: 000000

City String
The merchant‘s postal/zip code as assigned by the merchant‘s bank or processor.

Length: 5 or 9 digits. Example: 314193262

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

Country String

The Country Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s country location. Length: 3 digits. Valid

Value: 840 – U.S.

CreditTermType
CreditTerminalTy

pe
N/A

CSPhone String N/A

CurrencyCode String

The Currency Code assigned by the merchant‘s bank or processor. This parameter

is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

DebitBIN String
The Bank Identification Number issued by the merchant‘s bank or processor. The

BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

DebitTermType
CreditTerminalTy
pe

N/A

PCCharge Version 5.9.0
Updated 2/8/2010

 451

Property Name Data Type Description - PccNPCSetup Properties

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String N/A

ebtABA String
The ABA number identifies the merchant to a direct debit switch. Applicable for

Debit/EBT transactions. This value is provided to the merchant by their Merchant
Services Provider or Processor. Length: 9 digits

ebtBIN String
The Bank Identification Number issued by the merchant‘s bank or processor. The

BIN identifies the Merchant Service Provider that signed up the merchant.

Length: 6 digits. Example: 999995

ebtFCSID String
The Food and Consumer Identifier identifies the Merchant as being certified and
approved to accept Food Stamps. Applicable to EBT transactions only. Length: 0

to 7 characters.

ebtReimbursement String
The Reimbursement Attribute designates the Reimbursement Fee applicable to a

transaction. Applicable for Debit/EBT transactions. This value is assigned to the
merchant by their Merchant Services Provider or Processor. Length: 1 character.

ebtSettleAgent String
The Merchant Settlement Agent Number identifies the merchant settling agent.

Applicable for Debit/EBT transactions. This value is provided to the merchant by

their Merchant Services Provider or Processor. Length: 4 characters

ebtSharingGroup String

The Sharing Group contains a listing of direct debit and EBT networks that may be

accessed. This value is provided to the merchant by their Merchant Services

Provider or Processor. The values must correspond to one of the Visa assigned

direct debit network types. This data is part of the VisaNet direct debit data.
Length: 1 to 30 characters.

EBTTermType
DebitTerminalTy

pe
N/A

ExpansionFactor String N/A

ExpressPay Boolean N/A

FloorLimit String N/A

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

Language String

Language indicator. Length: 2 digits. Valid Values:

00 – English

01 – Spanish

02 – Portuguese

03 – Reserved for Irish

04 – Reserved for French

05 – Reserved for German

06 – Reserved for Italian

07 – Reserved for Dutch

Location String N/A

MaxBatchSize String N/A

MCReversal Boolean N/A

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Phone1 String

Primary phone number for settlement. If this value is set and Dial-up modem is

the communication method, PCCharge will attempt to settle transactions using

this phone number rather than the authorization phone number.

PCCharge Version 5.9.0
Updated 2/8/2010

 452

Property Name Data Type Description - PccNPCSetup Properties

Phone2 String

Secondary phone number for settlement. If this value is set and Dial-up modem is

the communication method, PCCharge will attempt to settle transactions using
this phone number rather than the authorization phone number.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Reimbursement String

The Reimbursement Attribute designates the Reimbursement Fee applicable to a

transaction. Applicable for Debit/EBT transactions. This value is assigned to the
merchant by their Merchant Services Provider or Processor. Length: 1 character.

RequireServerID String N/A

SettleAgent String
The Merchant Settlement Agent Number identifies the merchant settling agent.

Applicable for Debit/EBT transactions. This value is provided to the merchant by
their Merchant Services Provider or Processor. Length: 4 characters

SettleConnect String

The type of connection used for settlement:

Valid values:

0 – Dial-up

1 – TCP/IP SSL

2 – TCP/IP Lease Line

SettleDialBackUp String

For settlement, flag that indicates whether to use the backup dial connection if
the Internet connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

SettleMaxBlockCount String The maximum block count used for settlement. Default value: 5

SettleMaxBlockSize String The maximum block size used for settlement. Default value: 12000 Format: bytes

SettlePrimaryPort String The system/socket port used to connect to the processor when processing via
TCP/IP.

SettlePrimaryURL String
The Hostname, URL, or IP address used to connect to the processor when

performing settlement via TCP/IP.

SettleTCP Boolean

Flag that determines whether settlement will occur using dial-up modem or

TCP/IP.

TRUE – Settle via TCP/IP

FALSE – Settle via Dial-up Modem

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

SharingGroup String

The Sharing Group contains a listing of direct debit and EBT networks that may be

accessed. This value is provided to the merchant by their Merchant Services

Provider or Processor. The values must correspond to one of the Visa assigned
direct debit network types. This data is part of the VisaNet direct debit data.

Length: 1 to 30 characters.

Store String

The Store Number assigned by the merchant‘s bank or processor. This parameter

is used to identify a specific merchant store location. Length: 4 digits. Example:
0011

Terminal String

The Terminal Number assigned by the merchant‘s bank or processor. This

parameter is used to identify a specific store terminal. Length: 4 digits.

Example: 9911.

TID String Terminal ID number for merchant account

TimeOut String

The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

TimeZone String

The Time Zone Differential as assigned by the merchant‘s bank or processor. This

value provides the standard local time zone differential from Greenwich Mean
Time (GMT). Length: 3 digits. Valid Values:

705 – Eastern

706 – Central

707 – Mountain

708 – Pacific
Note: Replace the leading 7 with a 1 if Daylight Savings is not observed.

Example: 107 – Arizona

PCCharge Version 5.9.0
Updated 2/8/2010

 453

Property Name Data Type Description - PccNPCSetup Properties

URL String N/A

URL2 String N/A

VSReversal Boolean Indicates whether VISA reversals will be processed.

PCCharge Version 5.9.0
Updated 2/8/2010

 454

PccNPCSetup Methods

Method Name Returned Value Description - PccNPCSetup Methods

CreateNPCDebitExtFil

e
None Used internally

CreateNPCExtFile None Used internally

IsExtendedInfoValid Boolean
Validates that each configuration field has been entered. Returns FALSE if any

of the fields are left blank.

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

ShowEBT Boolean

Shows a GUI form that allows the end-user to enter EBT configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowEBT.

PCCharge Version 5.9.0
Updated 2/8/2010

 455

PccPrivateSetup

This class contains information about the Private Label company setup in the current instance of
PCCharge. This is a Multi Use class.

PccPrivateSetup Properties

Property Name Data Type Description - PccPrivateSetup Properties

Authorize Boolean
Flag that indicates whether the merchant will activate the processing of Private

Label cards.

BINEnd String The ending BIN range of the private label card

BINStart String The starting BIN range of the private label card

CardDescription String Description of the type of private label card to be used

CardIndex Integer The card index

CardType String The type of private label card to be used

CheckDigitType String The type of check digit routine used to validate private label cards.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IsSetup Boolean Used internally

MaxCards Integer Used internally

MaxLength Integer Sets maximum length of the private label card numbers.

MerchantNumber String
The Merchant Number. This number is issued to the merchant by the Processor or

the Merchant Services Provider. Max Length: 32 characters. This value can be
alphanumeric.

MinLength Integer Sets minimum length of the private label card numbers.

Multiplier String The multiplier that is used to verify that a private label card is valid.

PrimaryPhone String The Primary number that will be used when processing transactions via dial-up

modem.

Processor String

The code for the processing company. This value can be no more than four
characters and must be capitalized. Valid values:

PRPN – Periphonic

ADSI – Alliance Data Systems

SecondaryPhone String The Secondary number that will be used when processing transactions via dial-up
modem.

Settle Boolean Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 456

PccPrivateSetup Methods

Method Name Returned Value Description - PccPrivateSetup Methods

CreatePrivateFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 457

PccRMRSSetup

This class contains National Check Network extended information for the current instance of PCCharge.
This is a Public Not Creatable class.

PccRMRSSetup Properties

Property Name Data Type Description - PccRMRSSetup Properties

BounceFee String
The fee used in cases of returned checks due to insufficient funds. Format:

Dollars

Canceled Boolean Used internally

FTPAddress String FTP address for check image upload.

FTPPassword String Password for access to image upload FTP

FTPUser String User ID for access to image upload FTP

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

OwnerCode String Owner code for image upload FTP

SalesBalance String The current Sales Balance

SalesCount String The current Sales Count

Truncation Boolean Flag that indicates whether check truncation / conversion will occur.

TruncationTID String

This is a unique identifier assigned by the merchant‘s bank or processor that

identifies the merchant. It will be in the format: site id–location id–rule set ,
where site id can be from 1 to 5 characters (numeric), location id can be from 1

to 6 characters (numeric), and rule set can be from 1 to 4 characters (numeric).

Example: 78-123456-9999 (dashes are necessary; no spaces).

VoidsBalance String The current Voids Balance

VoidsCount String The current Voids Count

PccRMRSSetup Methods

Method Name Returned Value Description - PccRMRSSetup Methods

CreateRMRSExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 458

PCCSMTSSetup

This class contains Smart Transaction Systems extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PCCSMTSSetup Properties

Property Name Data Type Description - PCCSMTSSetup Properties

BType String

The merchant‘s business type. Valid values:

R – Retail / Other

F – Restaurant

Canceled Boolean Used internally

Connect String

Indicates method of connection to processor.
Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Port String
The system/socket port used to connect to the processor when processing via
TCP/IP.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more

information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

TerminalID String

This is a unique identifier assigned by the merchant‘s bank or processor that

identifies the merchant. This value may or may not be required. The merchant
should check with their bank or processor.

TimeOut String

The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

PCCharge Version 5.9.0
Updated 2/8/2010

 459

PCCSMTSSetup Methods

Method Name Returned Value Description - PCCSMTSSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 460

PCCSPSGiftSetup

This class contains Secure Payment Systems Gift extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PCCSPSGiftSetup Properties

Property Name Data Type Description - PCCSPSGiftSetup Properties

BType String N/A

Canceled Boolean Used internally

Connect String

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more
information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

TerminalID String
This is a unique identifier assigned by the merchant‘s bank or processor that

identifies the merchant. This value may or may not be required. The merchant
should check with their bank or processor.

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time

out before attempting the transaction via dial Format: Seconds

URL String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PCCharge Version 5.9.0
Updated 2/8/2010

 461

PCCSPSGiftSetup Methods

Method Name Returned Value Description - PCCSPSGiftSetup Methods

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 462

PccSPSSetup

This class contains Secure Payment Systems Check extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccSPSSetup Properties

Property Name Data Type Description - PccSPSSetup Properties

Canceled Boolean Used internally

DLLimit String
The limit of the transaction amount after which a driver‘s license number is
required. Format: Dollars.

FTPAddress String FTP address for check image upload.

FTPPassword String Password for access to image upload FTP

FTPUser String User ID for access to image upload FTP

Guarantee Boolean Flag that indicates whether check guarantee will occur.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show

methods. The index of the merchant number is determined by the order that it
was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

SalesBalance String The current Sales Balance

SalesCount String The current Sales Count

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time

out before attempting the transaction via dial Format: Seconds

Truncation Boolean N/A

URL String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

VoidsBalance String The current Voids Balance

VoidsCount String The current Voids Count

PccSPSSetup Methods

Method Name Returned Value Description - PccSPSSetup Methods

CreateSPSExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 463

Method Name Returned Value Description - PccSPSSetup Methods

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK

after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

PCCharge Version 5.9.0
Updated 2/8/2010

 464

PccSVSISetup

This class contains Stored Value Systems Gift extended information for the current instance of
PCCharge. This is a Public Not Creatable class.

PccSVSISetup Properties

Property Name Data Type Description - PCCSVSISetup

Canceled Boolean Used internally

Index

Integer

The Merchant Number index. If Index is set to a value

greater than 0, the tid.pcc file will be accessed and
the merchant number at that index in the file will be

used. Index should be set prior to calling the Load,

Save, or Show methods. The index of the merchant
number is determined by the order that it was added

to PCCharge. For example, the first merchant number

added to PCCharge will have an index of ―1‖, the
second, ―2‖, etc.

Division String Assigned by the merchant. Identifies the division at

which the card is being accepted.

Store String Assigned by the merchant. Uniquely identifies the
location at which the card is being accepted.

CurrencyCode String Indicates which currency to be used with the card.

Timeout String Determines how long PCCharge will wait for an

authorization to timeout.

Terminal String Assigned by the merchant. Identifies the terminal

where the transaction took place.

AllowTips

String

Indicates if tips are supported by the merchant:

Valid Values:
0 – No Tips Allowed

1 – Tips Allowed
RoutingIndicator String Six character range of values in the dial-up service

provider‘s POS routing tables provided by the
processor.

UseTestSystem

String

Indicates if transaction be sent to the development

system.
Valid values:

0 – Do not send to development system

1 – Send to development system

PCCharge Version 5.9.0
Updated 2/8/2010

 465

PccSVSISetup Methods

Method Name Returned Value PCCSVSISetup Methods

Load

Boolean

Loads the configuration data from the
configuration file(s) and populates the various

setup properties with the data. The data in

the properties can then be modified
programmatically or can be modified by the

end-user using the GUI form that is displayed

by the Show method. If the data is modified

programmatically, invoke the Save method to
update the configuration file(s) with the new

values. After calling Load, TRUE is returned if

successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling

Load.

Save

Boolean

Updates the configuration file(s) with the

values currently stored in the various setup

properties. Returns TRUE if successful, FALSE
otherwise.

Show

Boolean

Shows a GUI form that allows the end-user to

enter or modify configuration information.

Returns TRUE if successful, FALSE otherwise.

Note: If the end-user clicks OK after modifying
configuration data, the data will be saved

automatically. If the end-user clicks Cancel,
the data will not be saved. Note: Set the

Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 466

PCCVisaSetup

This class contains TSYS/Vital extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccVisaSetup Properties

Property Name Data Type Description - PccVisaSetup Properties

ABA String
The ABA number identifies the merchant to a direct debit switch. Applicable for
Debit/EBT transactions. This value is provided to the merchant by their Merchant

Services Provider or Processor. Length: 9 digits

Agent String

The Agent Bank Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific agent entity of the member bank or
processor. Length: 6 digits. Example: 111111

AuthPrimaryPort String N/A

AuthPrimaryURL String N/A

Batch String
The Current batch number. This value is incremented by the processor after each

successful settlement.

Bin String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant. Length:

6 digits. Example: 999995

BType Integer

The merchant‘s business type.

Valid values:
0 – Retail

1 – Mail order

2 – Electronic Commerce
4 – Restaurant

Canceled Boolean Used internally

Category String

The Merchant Category Code assigned by the merchant‘s bank or processor. This

parameter is used to identify the merchant‘s industry classification. Length: 4

digits. Example: 5999

Chain String

The Agent Chain Number issued by the merchant‘s bank or processor. This

parameter is used to identify a specific chain of an agent organization. Length: 6

digits. Example: 000000

City String
The merchant‘s postal/zip code as assigned by the merchant‘s bank or processor.
Length: 5 or 9 digits. Example: 314193262

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

Country String

The Country Code assigned by the merchant‘s bank or processor. This parameter is

used to identify the merchant‘s country location. Length: 3 digits. Valid Value:

840 – U.S.

CreditTermType
CreditTerminalTy

pe

Cardholder-Activated Terminal Type. This setting determines which Cardholder

Identification Code that will be passed to the processor. This value determines the

method used to authenticate the identify of the cardholder for the transaction.
Valid values:

0 – Non-Terminal

1 – Self-Serve Limited Amount

2 – Self-Serve Terminal

CSPhone String

The Merchant Local Telephone Number. Length: 11 characters. Format: NNN-

nnnnnnn where NNN is the area code and nnnnnnn is the telephone number. The

hyphen is required. Example: 800-7259264

CurrencyCode String

The Currency Code assigned by the merchant‘s bank or processor. This parameter
is used to identify the merchant‘s settlement currency. Length: 3 digits. Valid

Value: 840 – U.S. Dollars

DebitBIN String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant. Length:

6 digits. Example: 999995

PCCharge Version 5.9.0
Updated 2/8/2010

 467

Property Name Data Type Description - PccVisaSetup Properties

DebitTermType
CreditTerminalTy

pe

Cardholder-Activated Terminal Type. This setting determines which Cardholder

Identification Code that will be passed to the processor. This value determines the
method used to authenticate the identify of the cardholder for the transaction.

Valid values:

0 – Non-Terminal

1 – Automated Dispensing

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet

connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

DID String N/A

ebtABA String
The ABA number identifies the merchant to a direct debit switch. Applicable for

Debit/EBT transactions. This value is provided to the merchant by their Merchant

Services Provider or Processor. Length: 9 digits

ebtBIN String
The Bank Identification Number issued by the merchant‘s bank or processor. The
BIN identifies the Merchant Service Provider that signed up the merchant. Length:

6 digits. Example: 999995

ebtFCSID String
The Food and Consumer Identifier identifies the Merchant as being certified and

approved to accept Food Stamps. Applicable to EBT transactions only. Length: 0
to 7 characters.

ebtReimbursement String
The Reimbursement Attribute designates the Reimbursement Fee applicable to a

transaction. Applicable for Debit/EBT transactions. This value is assigned to the

merchant by their Merchant Services Provider or Processor. Length: 1 character.

ebtSettleAgent String
The Merchant Settlement Agent Number identifies the merchant settling agent.
Applicable for Debit/EBT transactions. This value is provided to the merchant by

their Merchant Services Provider or Processor. Length: 4 characters

ebtSharingGroup String

The Sharing Group contains a listing of direct debit and EBT networks that may be

accessed. This value is provided to the merchant by their Merchant Services
Provider or Processor. The values must correspond to one of the Visa assigned

direct debit network types. This data is part of the VisaNet direct debit data.

Length: 1 to 30 characters.

EBTTermType
DebitTerminalTyp

e

Cardholder-Activated Terminal Type. This setting determines which Cardholder
Identification Code that will be passed to the processor. This value determines the

method used to authenticate the identify of the cardholder for the transaction.

Valid values:
0 – Non-Terminal

1 – Automated Dispensing

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are
processed using the PCCharge GUI.

ExpressPay Boolean

Express Pay flag. This setting only applies if the Business Type is set to retail. If

this flag is set to TRUE and the amount of the transaction is less than the

FloorLimit amount, PCCharge will not authorize the transaction—it will only

place the transaction in the open batch. Express Pay is usually used in a quick
service environment with small ticket items. Note: Using Express Pay will increase

transaction processing costs.

FloorLimit String

The floor limit amount. This setting is only applicable if the Business Type is set to

retail. The floor limit is the maximum transaction amount that will be accepted by
PCCharge when processing an Express Pay transaction

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

IP String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

PCCharge Version 5.9.0
Updated 2/8/2010

 468

Property Name Data Type Description - PccVisaSetup Properties

Language String

Language indicator. Length: 2 digits. Valid Values:

00 – English

01 – Spanish

02 – Portuguese

03 – Reserved for Irish

04 – Reserved for French

05 – Reserved for German

06 – Reserved for Italian

07 – Reserved for Dutch

Location String

The Merchant Location Number provides additional information on the location of

the merchant. Length: 5 characters. Example: 00001 Note: This value should be

00001 unless otherwise specified by the merchant‘s bank or processor.

MaxBatchSize String

Specifies the maximum number of transactions per batch that PCCharge will send
to the processor. If the number of transactions to be settled is greater than the

number specified in this setting, PCCharge will split the batch into multiple

batches, each containing (at most) the number transactions specified in this
setting. The batches are then sent to the processor one at a time. Example: A

merchant has 250 transaction to settle and the MaxBatchSize is set to 100.

PCCharge will send two 100-transaction batches and one 50-transaction batch.

Max Value: 999

MCReversal Boolean N/A

PCard Boolean

Flag that indicates to enable or disable the Commercial / Purchasing card fields

(Tax and Customer code) in the PCCharge GUI.

TRUE – Enable fields

FALSE – Disable fields

Phone1 String

Primary phone number for settlement. If this value is set and Dial-up modem is

the communication method, PCCharge will attempt to settle transactions using this

phone number rather than the authorization phone number.

Phone2 String
Secondary phone number for settlement. If this value is set and Dial-up modem is
the communication method, PCCharge will attempt to settle transactions using this

phone number rather than the authorization phone number.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

Reimbursement String
The Reimbursement Attribute designates the Reimbursement Fee applicable to a
transaction. Applicable for Debit/EBT transactions. This value is assigned to the

merchant by their Merchant Services Provider or Processor. Length: 1 character.

RequireServerID String

Indicates whether PCCharge will require a Server ID during gratuity-related

restaurant transactions. Consult the section Restaurant Transactions for more
information (see page 104). Valid Values:

0 – Server ID not required

1 – Server ID required

SettleAgent String
The Merchant Settlement Agent Number identifies the merchant settling agent.
Applicable for Debit/EBT transactions. This value is provided to the merchant by

their Merchant Services Provider or Processor. Length: 4 characters

SettleConnect String N/A

SettleDialBackUp String N/A

SettleMaxBlockCount String N/A

SettleMaxBlockSize String N/A

SettlePrimaryPort String N/A

SettlePrimaryURL String N/A

SettleTCP Boolean N/A

SettleTimeOut String
The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format: Seconds

SharingGroup String

The Sharing Group contains a listing of direct debit and EBT networks that may be
accessed. This value is provided to the merchant by their Merchant Services

Provider or Processor. The values must correspond to one of the Visa assigned

direct debit network types. This data is part of the VisaNet direct debit data.
Length: 1 to 30 characters.

PCCharge Version 5.9.0
Updated 2/8/2010

 469

Property Name Data Type Description - PccVisaSetup Properties

Store String

The Store Number assigned by the merchant‘s bank or processor. This parameter

is used to identify a specific merchant store location. Length: 4 digits. Example:
0011

Terminal String

The Terminal Number assigned by the merchant‘s bank or processor. This

parameter is used to identify a specific store terminal. Length: 4 digits.

Example: 9911.

TID String N/A

TimeOut String

The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time out
before attempting the transaction via dial Format: Seconds

TimeZone String

The Time Zone Differential as assigned by the merchant‘s bank or processor. This

value provides the standard local time zone differential from Greenwich Mean
Time (GMT). Length: 3 digits. Valid Values:

705 – Eastern

706 – Central

707 – Mountain

708 – Pacific
Note: Replace the leading 7 with a 1 if Daylight Savings is not observed.

Example: 107 – Arizona

URL String N/A

URL2 String N/A

VSReversal Boolean Indicates whether VISA reversals will be processed.

PCCharge Version 5.9.0
Updated 2/8/2010

 470

PccVisaSetup Methods

Method Name Returned Value Description - PccVisaSetup Methods

CreateVisaAdvanceFil

e
None Used internally

CreateVisaDebitExtFi

le
None Used internally

CreateVisaEBTExtFile None Used internally

CreateVisaExtFile None Used internally

CreateVisaIPNExtFile None Used internally

IsExtendedInfoValid Boolean Validates that each configuration field has been entered. Returns FALSE if any
of the fields are left blank.

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be
modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration
information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK
after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowDebit Boolean

Shows a GUI form that allows the end-user to enter Debit configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowDebit.

ShowEBT Boolean

Shows a GUI form that allows the end-user to enter EBT configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowEBT.

PCCharge Version 5.9.0
Updated 2/8/2010

 471

PccVLNKSetup

This class contains ValueLink extended information for the current instance of PCCharge. This is a
Public Not Creatable class.

PccVLNKSetup Properties

Property Name Data Type Description - PccVLNKSetup Properties

AltMerchNum String
Alternate merchant ID number. Recommended use: merchant designated
store/location number.

BType String

The merchant‘s business type. Valid values:

0 – Retail

1 – Restaurant

2 – Electronic Commerce

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

ExpansionFactor String

Percent by which restaurant-based transactions will be incremented during

gratuity-related transactions. This setting only applies when transactions are

processed using the PCCharge GUI.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

PreAuth Boolean Flag that indicates whether to simulate Pre-/Post-Auth process

RequireClerkID String

Flag the indicates whether the Clerk/Server ID is required when processing gift
transactions

Valid values:

0 – Clerk ID not required

1 – Clerk ID required

SplitTender Boolean Flag that indicates whether to allow split-tender scenario

TerminalID String
The Terminal Number assigned by the merchant‘s bank or processor. This

parameter is used to identify a specific store terminal. Length: 4 digits.

PccVLNKSetup Methods

Method Name Returned Value Description - PccVLNKSetup Methods

CreateVLNKExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

PCCharge Version 5.9.0
Updated 2/8/2010

 472

Method Name Returned Value Description - PccVLNKSetup Methods

ShowGC Boolean

Shows a GUI form that allows the end-user to enter extended or advanced Gift

Card configuration information such as the business type, communication method,

or other related settings. Returns TRUE if successful, FALSE otherwise. Note: If

the end-user clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGC.

PCCharge Version 5.9.0
Updated 2/8/2010

 473

PccVTECSetup

This class contains Valutec extended information for the current instance of PCCharge. This is a Public
Not Creatable class.

PccVTECSetup Properties

Property Name Data Type Description - PccVTECSetup Properties

Canceled Boolean Used internally

CashierFlag String Used internally

Connect Integer

Indicates method of connection to processor.

Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean N/A

ExpDateFlag String Used internally

GiftConnect Integer

Indicates method of connection to processor when processing gift cards.

Valid values:

0 – Dial-up

1 – TCP/IP

GiftDialBackup Boolean N/A

GiftPort String
The system/socket port used to connect to the processor when processing via

TCP/IP.

GiftSettleTimeOut String

The Internet Settlement Timeout Value. If GiftDialBackup is set to TRUE,

GiftSettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

GiftTimeOut String
The Internet Authorization Timeout Value. If GiftDialBackup is set to TRUE,

GiftTimeOut determines how long PCCharge will wait for a gift card transaction
to time out before attempting the transaction via dial Format: Seconds

GiftURL String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to

PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Industry String

The merchant‘s business type. Valid values:

1 – Retail

2 – Restaurant

MerchCardNum String The merchant card assigned by the merchant‘s bank or processor. Length: 10

digits.

ModeFlag String Used internally

Password1 String Used internally

Password2 String Used internally

Password3 String Used internally

PasswordFlag String Used internally

Port String The system/socket port used to connect to the processor when processing via

TCP/IP.

Receipt1 String Used internally

Receipt2 String Used internally

Receipt3 String Used internally

Receipt4 String Used internally

ReceiptFlag String Used internally

PCCharge Version 5.9.0
Updated 2/8/2010

 474

Property Name Data Type Description - PccVTECSetup Properties

SettleTimeOut String

The Internet Settlement Timeout Value. If DialBackup is set to TRUE,

SettleTimeOut determines how long PCCharge will wait for a settlement

operation to time out before attempting the settlement via dial Format:
Seconds

SplitTender String

Flag that determines whether split tender is enabled.

Valid values:

0 – Split Tender disabled

1 – Split Tender enabled

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

TipFlag String Used internally

TipPercent String Used internally

URL String The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

PccVTECSetup Methods

Method Name Returned Value Description - PccVTECSetup Methods

CreateVTECAdvanceFil

e
None Used internally

CreateVTECExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the

various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowAdvanced Boolean

Shows a GUI form that allows the end-user to enter Advanced configuration

information such as the communication method and other related settings.

Returns TRUE if successful, FALSE otherwise. Note: If the end-user clicks OK

after modifying configuration data, the data will be saved automatically. If the

end-user clicks Cancel, the data will not be saved. Note: Set the Index

property prior to calling ShowAdvanced.

ShowGC Boolean

Shows a GUI form that allows the end-user to enter extended or advanced Gift

Card configuration information such as the business type, communication method,

or other related settings. Returns TRUE if successful, FALSE otherwise. Note: If

the end-user clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGC.

PCCharge Version 5.9.0
Updated 2/8/2010

 475

PccWRLDSetup

This class contains World extended information for the current instance of PCCharge. This is a Public
Not Creatable class.

PccWRLDSetup Properties

Property Name Data Type Description - PccWRLDSetup Properties

Canceled Boolean Used internally

Connect Integer

Indicates method of connection to processor.
Valid values:

0 – Dial-up

1 – TCP/IP

DialBackup Boolean

Flag that indicates whether to use the backup dial connection if the Internet
connection is not available. Value Values:

TRUE – Use Dial-Up modem for Backup

FALSE – Do not us Dial-Up modem for Backup

Index Integer

The Merchant Number index. If Index is set to a value greater than 0, the

tid.pcc file will be accessed and the merchant number at that index in the file

will be used. Index should be set prior to calling the Load, Save, or Show
methods. The index of the merchant number is determined by the order that it

was added to PCCharge. For example, the first merchant number added to
PCCharge will have an index of ―1‖, the second, ―2‖, etc.

Port String
The system/socket port used to connect to the processor when processing via

TCP/IP.

PrimaryURL String
The Hostname, URL, or IP address used to connect to the processor when
processing via TCP/IP.

RequireClerkID String

Flag the indicates whether the Clerk ID is required when processing gift

transactions

Valid values:

0 – Clerk ID not required

1 – Clerk ID required

SecondaryIP Boolean Used internally

SecondaryURL String
The Secondary Hostname, URL, or IP address used to connect to the processor

when processing via TCP/IP.

TimeOut String
The Internet Authorization Timeout Value. If DialBackup is set to TRUE,

TimeOut determines how long PCCharge will wait for an authorization to time
out before attempting the transaction via dial Format: Seconds

URL String
The Hostname, URL, or IP address used to connect to the processor when

processing via TCP/IP.

PCCharge Version 5.9.0
Updated 2/8/2010

 476

PccWRLDSetup Methods

Method Name Returned Value Description - PccWRLDSetup Methods

CreateWRLDExtFile None Used internally

Load Boolean

Loads the configuration data from the configuration file(s) and populates the
various setup properties with the data. The data in the properties can then be

modified programmatically or can be modified by the end-user using the GUI form

that is displayed by the Show method. If the data is modified programmatically,

invoke the Save method to update the configuration file(s) with the new values.

After calling Load, TRUE is returned if successful, otherwise FALSE is returned.

Note: Set the Index property prior to calling Load.

Save Boolean
Updates the configuration file(s) with the values currently stored in the various

setup properties. Returns TRUE if successful, FALSE otherwise.

Show Boolean

Shows a GUI form that allows the end-user to enter or modify configuration

information. Returns TRUE if successful, FALSE otherwise. Note: If the end-user

clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling Show.

ShowGC Boolean

Shows a GUI form that allows the end-user to enter extended or advanced Gift

Card configuration information such as the business type, communication method,

or other related settings. Returns TRUE if successful, FALSE otherwise. Note: If

the end-user clicks OK after modifying configuration data, the data will be saved

automatically. If the end-user clicks Cancel, the data will not be saved. Note:

Set the Index property prior to calling ShowGC.

PCCharge Version 5.9.0
Updated 2/8/2010

 477

Classes No Longer Supported / Internal Use Classes

The following list contains various PCCharge OLE/COM classes that are either:

1) Used internally by PCCharge
2) No longer supported by PCCharge

In either case, integrators should not attempt to programmatically access the properties, methods, or
events contained in any of following classes. These classes will remain exposed for backwards
compatibility purposes.
clsPurgeDatabase
PccASISetup
PCCBBGFSetup
PccBMONSetup
PccCallBack
PccCardReader
PccCcrdTcpAuth
PccCCRDSetup
PccCheckReader
PccConnect
PccDataHandler
PccDiscDialSetup
PccEcom
PCCEnCheckMSR
PccENCNAuth
PccENCNSetup
PccEXPRSetup
PccFraud
PccFHAWSetup
PccFTMSSetup
PccGSARAuth
PccIndeterminateBatch
PccIPGSSetup
PccISDNSetup
PccMAPPSetup
PccMDISetup
PccMPSSetup
PccMVRKSetup
PccNovusSetup
PccOfflineTrans
pccPenWare
PccPrivateLabel
PccRBOCDebit
PccRBOCSetup
PccReportPrinter
PccResponse
PccSSLTCPAuth
PccSystem
PccTelmSetup
PccTMHSetup
pccTran
PccUsers
PccVerification
PccVTECAuth
Xtimer

PCCharge Version 5.9.0
Updated 2/8/2010

 478

File Method

Introduction

As of PCCharge version 5.6 and above, PCCharge‘s primary message format is XML. The XML message
format has replaced the legacy “INP” message format so that integrators will not be limited to
fixed length files for integration. All of PCCharge‘s integration methods support the XML message
format and also support backward compatibility so that integrations using the INP message format will
still be able to process transactions using that format. However, all new features that are added to
PCCharge will be supported only by the XML message format.

All references to the INP message format have been removed from this manual. Although it is highly
recommended that all new (and existing) integrations take advantage of the XML message format,
older copies of the DevKit that outline the INP message format are available for integrators upon
request. Contact VeriFone, Inc. at 1-800-725-9264 to request a copy of an older DevKit manual.

WARNING: VeriFone, Inc. takes security seriously therefore
we have enhanced our integration methods to enhance
security for sensitive data. If using File Method integration to
PCCharge we strongly suggest you consider migrating towards
a more secure integration method such as TCP/IP SSL socket
integration.

File Method Integration

The File Method allows integrators to perform integration functions using flat text files. The files can
be created on a machine running any operating system (Windows, UNIX, Mac, etc.). To process
transactions via the File Method, the application should:

1. Check if SYS.PCC exists in the PCCharge directory. If it does, there is an error state. The number

in the first byte of the file indicates the error type. The number is an error code listed in the
DevKit Constants section (see page 141). If the file does not exist, then PCCharge is running and
ready to receive transactions.

2. Write the transaction information to a file in the XML message format (ASCII text) using the file

layouts described in this section.

3. Name the file <user name>.inx where <user name> is a user that is registered in PCCharge*.

4. Place the <user name>.inx file into the PCCharge directory. The transaction will now be
processed by PCCharge.

5. Wait for <user name>.oux to appear in the PCCharge directory.

6. Read the values from <user name>.oux. The most important information is returned in the

RESULT and AUTH_CODE tags.

7. Delete <user name>.oux and any other files with the same name, regardless of the extension.

Make sure not to delete the Users.pcc file. It is extremely important to delete these files. Not

deleting the .oux file or any associated transaction file could cause the client application to read

the same results later.

PCCharge Version 5.9.0
Updated 2/8/2010

 479

 If PCCharge is set up with an unlimited user license, <user name> can also be any 8 character

alphanumeric name. The user name must be in DOS file format, no spaces. Also, the filename

must be the same as the value of that file's USER_ID tag.

Note: PCCharge is a single-threaded application. This means that PCCharge can only process one
transaction at a time. Keep in mind that no two transaction requests can be submitted at the same
time with the same user name.

WARNING: VeriFone, Inc. takes security seriously therefore
we have enhanced our integration methods to enhance
security for sensitive data. If using File Method integration to
PCCharge we strongly suggest you consider migrating towards
a more secure integration method such as TCP/IP SSL socket
integration.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

PCCharge Version 5.9.0
Updated 2/8/2010

 480

File Layout Specifications

In order for a request to be processed, the request file (.inx) must open and close with an XML_FILE

tag and each request within the file must open and close with an XML_REQUEST tag. Currently,

PCCharge will only support one request per file; this may change in the future. Within the

XML_REQUEST tag put the tags and values of all the data that will be needed to process the

transaction.

Once the request has been processed, a response file (.oux) will be returned. The response file, like

the request file, will open with an XML_FILE tag and the transaction response will be wrapped within

the XML_REQUEST tag.

XML Data Validation

PCCharge provides request file data validation for integrators implementing the File Method. PCCharge
uses the Microsoft XDR (XML-Data Reduced) schema to provide this data validation. The file used by

PCCharge to implement the data validation is called stnd.xdr. This file is installed by PCCharge and

resides in the \DTD folder within the PCCharge directory.

In order to perform XDR validation on the XML request:

1. The XML_FILE tag must reference the stnd.xdr file.

2. The tags submitted must be in the order that they appear in the stnd.xdr file.
3. Each tag must appear only once.
4. The content for each tag must be text only.

The following is an example of request that will be validated:

<XML_FILE xmlns="x-schema:.\dtd\stnd.xdr">

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <COMMAND>1</COMMAND>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <ACCT_NUM>5424180279791765</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>0</MANUAL_FLAG>

 <TRANS_AMOUNT>1.00</TRANS_AMOUNT>

 </XML_REQUEST>

</XML_FILE>

Notice that the XML_FILE tag references the path of the stnd.xdr file. Also, the tags are in the

same order that they appear in the stnd.xdr file. This file will be validated successfully.

If a request file does not pass validation, PCCharge will return an ―Incomplete Trans‖ error.

The following is an example of a response that was returned because validation failed:

<XML_FILE>

 <XML_REQUEST>

 <USER_ID>User1</USER_ID>

 <RESULT>Error</RESULT>

 <AUTH_CODE>Incomplete Trans</AUTH_CODE>

 </XML_REQUEST>

</XML_FILE>

PCCharge Version 5.9.0
Updated 2/8/2010

 481

PCCharge Version 5.9.0
Updated 2/8/2010

 482

Many integrators do not wish to be limited by the requirements of XDR validation; specifically, the
mandated order of the tags in the request file. If this is the case, simply remove the reference to the

validation file, stnd.xdr, from the XML_FILE tag. The tags inside <XML_REQUEST> can now be
placed in any order that the integrator sees fit.

The following is an example of request file that will not be validated but will still be processed
successfully by PCCharge:

<XML_FILE>

 <XML_REQUEST>

 <ACCT_NUM>5424180279791765</ACCT_NUM>

 <EXP_DATE>1211</EXP_DATE>

 <MANUAL_FLAG>0</MANUAL_FLAG>

 <TRANS_AMOUNT>1.00</TRANS_AMOUNT>

 <PROCESSOR_ID>VISA</PROCESSOR_ID>

 <MERCH_NUM>999999999911</MERCH_NUM>

 <COMMAND>1</COMMAND>

 <USER_ID>User1</USER_ID>

 </XML_REQUEST>

</XML_FILE>

Notice that the XML_FILE tag does not reference the stnd.xdr file.

Note: Regardless of whether PCCharge validates the request data using the stnd.xdr file, the
application should always perform input validation according to the API specifications prior to passing
requests to PCCharge.

WARNING: VeriFone, Inc. takes security seriously therefore
we have enhanced our integration methods to enhance
security for sensitive data. If using File Method integration to
PCCharge we strongly suggest you consider migrating towards
a more secure integration method such as TCP/IP SSL socket
integration.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

PCCharge Version 5.9.0
Updated 2/8/2010

 483

Credit File Layouts

This section describes the tags required to process credit card transactions.

Credit Input File (.inx)

Tag Data Type Description - Credit Input File (.inx)

USER_ID ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

TROUTD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

PROCESSOR_ID *** String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

MERCH_NUM *** String

The Merchant Number. This number is issued to the merchant by the
Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Credit Card Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

ACCT_NUM String

The credit card number that will be used when processing the transaction.
Max Length: 20 characters. Example: 5424180279791765

NOTE: Is it the integrator‘s responsibility to remove spaces in the card

number if there are spaces in the Track II card number data.

EXP_DATE String

The expiration date associated with the credit card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

MANUAL_FLAG String

Flag that indicates whether the transaction was manually entered or swiped.

If the transaction was swiped, the TRACK_DATA property must also be set.

Valid values: 0 = manual transaction, 1 = swiped transaction

TRANS_AMOUNT String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.
Example: Incorrect format ―0001.00‖.

PCCharge Version 5.9.0
Updated 2/8/2010

 484

Tag Data Type Description - Credit Input File (.inx)

REFERENCE String

The reference number from the original transaction (returned by the

processor). Set this property only if processing a Post-Authorization and the
Post-Authorization is being used to add a Voice-Authorization to the batch or

to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The REFERENCE property does not need to be
set if the Post-Authorization completes a standard Pre-Authorization using

the TroutD value of the Pre-Authorization. See the section Follow On
Transactions for more information (see page 70). Max Length: 8 characters.

Note: NBS/ Fleet One cards require a Reference Number to be sent with

each transaction. This is a minimum of 2 digits and a max of 15. This must
be all numeric.

TRACK_DATA String

The track II data captured from the magnetic strip of the credit card. The

track II data is required to ensure the lowest per-transaction rate from the

processing company when performing swiped transactions (Retail and
Restaurant). Sending the track II data is not allowed if the merchant's

industry type is MOTO or eCommerce. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567
Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

CUSTOMER_CODE String

Customer code for purchasing/commercial cards. This property must be set
for commercial card transactions in order to get the best discount rate.

Additionally, the transaction's action code must indicate that the transaction

is a commercial card transaction. Note: Global East (NDC), terminal based,
requires the customer code be all upper case. Max Length: 25 characters,

alphanumeric only.

CREDIT_PLAN_NUMBER String

The credit plan numbers are established by the processor CITI for each

merchant, they define the type of Disclaimer to print on receipts. This
information will vary from merchant to merchant.

TAX_AMOUNT String

The tax amount. This is the portion of the amount that is tax. Providing the

tax amount is required to obtain the best rate on commercial card

transactions. Max Length: 9 characters (including the decimal). Format:

DDDDDD.CC. The transaction's action code must indicate that it is a

commercial transaction. Tax amount should be included in the amount field.

PRINT_RECEIPTS_FLAG String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

PERIODIC_PAYMENT_FLAG String

Flag that indicates whether the transaction is a recurring transaction. Valid

values: 1 = TRUE, 0 = FALSE Note: If periodic payment is set to true,

the recurring billing flags must also be set to achieve the best processing
rates.

OFFLINE_FLAG String

Flag that indicates whether PCCharge should process the transaction offline.

If the offline flag is set, PCCharge will put the transaction into a .BCH file
that resides in the PCCharge directory for importing at a later time. The file

can only be imported from the PCCharge GUI. Valid values: 1 = TRUE, 0
= FALSE

ZIP_CODE String

The cardholder's zip code. The Zip property is used for address verification.

Max Length: 9 digits. Address verification can only be performed on non-

swiped transactions. Note: For manually keyed transactions, the Zip is

required to qualify for the lowest transaction rates. Note: If submitting the
9-digit zip, do not include the dash.

Citi© - When used with Citi Plan the zip is limited to 5-digits.

STREET String

The cardholder's billing street address. The Street property is used for
address verification. Address verification can only be performed on non-

swiped transactions. For FDC: Use first 5 digits only. Note: For manually

keyed transactions, Street is required to qualify for the lowest transaction
rates. Max Length: 20 characters

Citi© - When used with Citi Plan PO Box‘s are not allowed.

PCCharge Version 5.9.0
Updated 2/8/2010

 485

Tag Data Type Description - Credit Input File (.inx)

TICKET_NUM String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing
purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: For manually

keyed transactions, TICKET_NUM is required to qualify for the lowest
transaction rates. Note: When using NDC, lower case characters must not be

used in the ticket number. Note: When using Elavon (NOVA), ticket numbers

can only be alphanumeric, no hyphens.

CARDHOLDER String The cardholder‘s name. Max Length: 20 characters.

MCSN String

In a restaurant environment: The server or cashier id. Max Length: 2. This

field should be passed for reporting and reconciliation purposes. See the

section Restaurant Transactions (see page 104) for more information.
Processor specific note: The Server ID is required for AMEX card

transactions. Also required when using the processor NB and GSAR in

restaurant business type.

In a non-restaurant environment, this field is the Multiple Count Sequence

Number. This is the transaction number within the total number of payment

installments in a recurring billing scenario. Max Length: 2 characters.
Example: If there are 5 payments to be made and this transaction is the first

transaction, set this property to ―1‖. The first transaction should also
include the CVV property, but this value should not be stored or sent for

subsequent transactions.

MCSC String

The Multiple Count Sequence Count. This is the total number of installments

that will be charged in a non-restaurant recurring billing scenario. Max
Length: 2 characters. Example: If there are 5 payments to be made, set this

property to ―5‖.

MULTI_FLAG String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

CVV2 String

The CVV2 value for the transaction. The card verification value (CVV2 for

Visa, CVC2 for MasterCard, and CID for AMEX and Discover) is a 3 or 4 digit
number that is embossed in the signature panel for Visa, MasterCard, and

Discover and on the front of the card for AMEX. All AMEX cards utilize a 4

digit CID. Max Length: 4 characters. CVV2 should only be passed on non-
swiped transactions.

PRESENT_FLAG String

For Retail or Restaurant transactions: Flag that indicates whether the card
was present.

For eCommerce transactions: Flag that indicates what type of transaction

occurred.

Valid values:

0 = Card not present, 1 = Card present (for Retail, MOTO, or Restaurant);

D = Digital goods, P = Physical goods (for eCommerce)

ITEM_ID String

The Item ID for the transaction. This field is only used for Chase Paymentech

(GSAR) and can store five (5) four-digit codes that are defined by Chase

Paymentech. Example: If ITEM_ID is set to 00010002000300040005, it

stores 5 item IDs (0001, 0002, 0003, 0004, and 0005). These numbers
must be obtained from Chase Paymentech.

ID_NUMBER String

Only required for Voyager cards, dependant on Restriction Code. Four to six

digits. Note: Only used for Pre-Authorization transactions
Update: Beginning with PCCharge version 5.8, this is also used for Citi©

Private Label. This is the number on the driver‘s license or state ID.

ODOMETER String
The odometer reading. Only required for Fleet One (7 digits), Voyager (7

digits), and Fuelman (6 digits) cards.

DRIVER_ID String
Driver identification field. Only required for Wright Express, Voyager and
Fleet One cards.

DRIVER_PIN String Driver personal identification number. Only required for Fuelman cards.

PCCharge Version 5.9.0
Updated 2/8/2010

 486

Tag Data Type Description - Credit Input File (.inx)

PRODUCT_DETAIL_AMOUNT_XX String

Note: Only required for the processor NBS. This is the total dollar amount

for PRODUCT_DETAIL_PRODUCT_CODE_XX being authorized.

For example, PRODUCT_DETAIL_PRODUCT_CODE_1 has a

PRODUCT_DETAIL_QUANTITY_1 = 2 and a

PRODUCT_DETAIL_UNIT_PRICE_1 = $2.00, therefore the

PRODUCT_DETAIL_AMOUNT_1 = $4.00

PRODUCT_DETAIL_COUNT Stringq

Note: Only required for the processor NBS. All card types are configurable

except for Fleet One which is limited to 7 records. Only 01 – 10 records are

currently supported through PCCharge for all card types.

PRODUCT_DETAIL_CODE_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

PRODUCT_DETAIL_QUANTITY_XX String

Note: Only used for the processor NBS. This is the unit price for

PRODUCT_DETAIL_PRODUCT_CODE_XX. This is only used for Fleet One and

Fuelman. Currently, PCCharge will support 1 – 10.

GRATUITY_AMNT String

For use with Restaurant transactions only. The actual gratuity amount for
a Sale with Gratuity (action code 14) , Gratuity (action code 13) , or Post-

Authorization (action code 5) transaction. See the section Restaurant

Transactions (see page 104) for more information.

GRATUITY_AMNT_EST String

For use with Restaurant transactions only. The estimated gratuity amount
for a Sale (action code 1) or Pre-Authorization (action code 4) transaction.

If the GRATUITY_AMNT_EST is populated, PCCharge will submit the sum of

the values in the TRANS_AMOUNT and GRATUITY_AMNT_EST fields for

authorization. If the transaction is authorized, only the value in the

TRANS_AMOUNT field will be placed in the PCCharge settlement file (if

running a Sale). By using the GRATUITY_AMNT_EST, the merchant can help
ensure that the customer has enough available credit on their card to leave a

tip. Once the customer indicates the amount of the tip that will be left, a
gratuity transaction (action code 13) must be performed on the sale prior to

settlement in order to add the actual gratuity to the transaction. Format:

DDDDDD.CC. Max Length: 9 characters, including the decimal. The value
may not be negative. Note: The amount MUST include the decimal point and

the cents even if the amount is a whole dollar amount. Example: ―3.00‖,

not ―3‖ or ―3.‖. If sending less than one dollar, the zero place holder must
be sent as well. See the section Restaurant Transactions (see page 104) for

more information. Note: It is recommended to check with the processor or

merchant service provider for guidance on what amount to set this value to.

Incorrectly setting this value can result in downgrades.

CMRCL_FLAG String

The type of commercial card being submitted. See the section Commercial

Card Transactions (see page 94) for more information. Max Length: 1
character

Valid values:

B – Business

P,L,G -- Purchase

C – Corporate

F – Fleet

AMX_CHARGE_DESCRIPTION String

The American Express Charge Description. This is a general description

describing merchandise: the AMEX representative and the merchant will

decide on an appropriate description. Note: Only Required for Retail, MOTO
and Restaurant transactions when using AMEX direct settlement. Max

Length: 23 bytes

AMX_DESCRIPTION_1 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:
Only used for Retail transactions when using AMEX direct settlement or TSYS

Max Length: 40 bytes

This field is optional and should only be provided if the transaction will be
settled directly with Amex or TSYS

PCCharge Version 5.9.0
Updated 2/8/2010

 487

Tag Data Type Description - Credit Input File (.inx)

AMX_DESCRIPTION_2 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:
Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes

This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AMX_DESCRIPTION_3 String

American Express Description data. Additional description or information

about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes
This field is optional and should only be provided if the transaction will be

settled directly with Amex or TSYS

AMX_DESCRIPTION_4 String

American Express Description data. Additional description or information
about merchandise—if populated, should be printed on the receipt. Note:

Only used for Retail transactions when using AMEX direct settlement. Max

Length: 40 bytes

This field is optional and should only be provided if the transaction will be
settled directly with Amex or TSYS

TRANS_STORE String

Flag indicating whether a Voice Authorization transaction should be stored.

This flag should only be submitted when performing a Post-Authorization

transaction (action code 5) that includes an authorization code from the
voice operator. For more information on stored Voice-Authorizations, see

page 92. Valid Value: 1 - Store the Voice Authorization transaction.

TXN_TIMEOUT String

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the transaction is submitted to

PCCharge. An error will be returned if the transaction has not finished

processing when the time period expires. It is highly recommended that
integrators review the section Timeouts (see page 59). Note: This tag only

works when using the TCP Interface.

AUTH_CODE String

The Authorization code. This value is returned by the issuing bank and

should only be set in a transaction request if processing a Post-Authorization
and the Post-Authorization is being used to add a Voice-Authorization to the

batch or to ―store‖ a Voice-Authorization. (For information on stored Voice-

Authorizations, see page 92). The AuthCode property does not need to be
set if the Post-Authorization completes a standard Pre-Authorization using

the TroutD value of the Pre-Authorization. See the section Follow On
Transactions for more information (see page 70).

TAX_EXEMPT String

Tax Exempt Flag. This flag is used to indicate if the purchase is tax exempt.

Used only for Commercial Card Transactions. Valid Values: 1 – Purchase is

tax exempt; 0 – Purchase is not tax exempt.

DEST_ZIP_CODE String

Destination Zip Code for American Express purchasing/commercial cards.

This property must be set for American Express commercial card transactions

when using American Express as the processor (or via split dial) in order to
get the best discount rate. Additionally, the transaction's action code must

indicate that the transaction is a commercial card transaction.

ITEM_ID String
For Chase Paymentech Only – EID Number

BILLPAY String

Only valid for Visa debit and credit transactions. It is used to indicate the
transaction is being ran for payment of a bill (ultilty, monthly gym dues,

etc.) Valid values:

0 – Non-Bill payment transaction
1 – Bill payment transaction

PCCharge Version 5.9.0
Updated 2/8/2010

 488

Tag Data Type Description - Credit Input File (.inx)

RESTRICTION_CODE String

Only required for Voyager cards. This is used to determine the level of

identification and which fields are required. Two digits.
Valid Values:

00 - No ID Number or Odometer required. Fuel and Other allowed.

01 - No ID Number or Odometer required. Fuel only allowed.

10 - ID Number only required. Fuel and Other allowed.
11 - ID Number only required. Fuel only allowed.

20 - Odometer only required. Fuel and Other allowed.

21 - Odometer only required. Fuel only allowed.
30 - ID Number and Odometer required. Fuel and Other allowed.

31 - ID Number and Odometer required. Fuel only allowed.

Note: Required for both manual and swiped transactions.

RFID String
Set to 1 if card information was read from RFID (Radio Frequency
Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

VEHICLE_ID String
Only required for Wright Express cards (5 digits) and Voyager cards (8 digits).

Note: Required for both manual and swiped transactions.

CASHIER_NAME String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

CUSTOMER_FIRSTNAME
1
 String Applicant‘s first name.

MIDDLE_INITIAL
1
 String Applicant‘s middle initial.

CUSTOMER_LASTNAME
1
 String Applicant‘s last name.

SUFFIX
1
 String Applicant‘s suffix. (Ex. M.D., Ph.D, Jr.)

APT_SUITE
1
 String Applicant‘s apartment or suite number.

CITY
1
 String Applicant‘s city.

STATE
1
 String Applicant state. (Ex: GA, FL, MA…)

EMAIL
1
 String Applicant e-mail address. (Ex: XXX@XX.XXX)

PHONE_NUM
1
 String Applicant‘s home phone number. Format xxxxxxxxxx 10-digits No Dashes

SS_NUM
1
 String Applicant‘s Social Security Number. Format xxxxxxxxx 9-digits No Dashes

DOB
1
 String Applicant‘s Date of Birth. Format is MMDDYYYY.

EMP_NAME
1
 String Applicant‘s Employer‘s Company name.

WORK_PHONE_NUM
1
 String Applicant data. Employer phone number. Format xxxxxxxxxx 10-digits.

HOME_OWNER
1
 String

Applicant data.

Format:
'O' = Own

'R' = Rent

'B' = Board
'P' = Live w/ parents

'M' = Military

ANNUAL_INCOME
1
 String

Applicant‘s annual income. Format: Up to 6 digits. Whole dollar amount with

no decimals.

PHOTO_ID_STATE
1
 String Applicant data. (Ex: GA, FL, MA…)

ID_TYPE
1
 String Received as a response to a Credit App (P3)

STATE
1
 String Received as a response to a Credit App (P3)

REPLY_FLAG
1
 Boolean

Reply notification.

Format:
Y = Accept

N = Decline

SOURCE_CODE
1
 String

Default is Opt In = “AP”

Format:

Opt In – ―AP‖

Opt Out – ―AO‖

mailto:XXX@XX.XXX

PCCharge Version 5.9.0
Updated 2/8/2010

 489

Tag Data Type Description - Credit Input File (.inx)

ID_TYPE
1
 String

Applicant data. Type of photo identification being submitted.

Format:

‗D‘ – Driver‘s License

‗O‘ – Other

FRAUD_FLAG
1
 Boolean

Code 10.
Values are 1 or 0: 1 = True, 0 = False

AMOUNT_HEALTHCARE

String

Total Healthcare Amount. This amount must be greater than or equal to the

sum of the other amount categories. Max: 12 - digits

Format: DDD.CC

AMOUNT_PRESCRIPTION
#
 String

(Optional) Total amount of the prescription-related healthcare expenses in
this transaction. Max: 12 - digits

Format: DDD.CC

AMOUNT_VISION
#
 String

(Optional) Total amount of the vision-related healthcare expenses in this

transaction. Max: 12 - digits
Format: DDD.CC

AMOUNT_CLINIC
#
 String

(Optional) Total amount of the clinic-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

AMOUNT_DENTAL
#
 String

(Optional) Total amount of the dental-related healthcare expenses in this

transaction. Max: 12 - digits

Format: DDD.CC

AMOUNT_TRANSIT
#
 String

(Optional) Reserved for future use. Max: 12 - digits
Format: DDD.CC

AMOUNT_COPAY
#
 String

(Optional) Reserved for future use. Max: 12 - digits

Format: DDD.CC

FSA
#
 Boolean

Indicates the transaction is FSA. This will bypass PCCharge BIN checking as

PCCharge will assume that the POS has verified that this card has met the
BIN requirements for an FSA transaction.

1 = True, 0 = False

Note: If this is not passed it defaults to False.

 These properties are the minimum required to process a Sale or Pre-Authorization transaction.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the PROCESSOR_ID and MERCH_NUM

properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The
―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, PROCESSOR_ID and MERCH_NUM
should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page 70) for more

information.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page

115.

Additional tags used to process FSA/HRA transactions. For more information please see the section about FSA on page 98.

Charge Output File (.oux)

Tag Data Type Description - Charge Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file

format, max 8 characters.

MERCH_NUM String
Returns the merchant number that was specified in the MerchantNumber
property.

PCCharge Version 5.9.0
Updated 2/8/2010

 490

Tag Data Type Description - Charge Output File (.oux)

TROUTD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

RESULT String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of
valid values and descriptions.

AMOUNT_DUE String

Returns the amount due, only for Elavon (NOVA) and FSA (on page 98) pre-

paid functionality.

Note: ―Enable Pre-Paid Cards‖ option within PCCharge MUST be checked for

this feature to work. The option is located under Setup>Credit Card

Company>Extended Data and only with the Credit Card Company set to
Elavon (NOVA). This option is only configurable in PCCharge version 5.7.1

release I sp9a and above.

AUTH_CODE String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was
declined (if the issuing bank provides one) or why the transaction was

rejected.

AUTH_AMOUNT String
The authorized amount of the transaction. Only used for pre-paid cards with

Elavon (NOVA) and FSA (on page 98).

CC_AVAIL_BALANCE String
Returns the PrePaid card balance. Only for pre-paid credit cards with Elavon
(NOVA) and FSA (on page 98).

DC_AVAIL_BALANCE String
Returns the available balance on pre-paid debit cards. Only for pre-paid

debit cards with Elavon (NOVA).

REFERENCE String

Returns the reference number associated with the transaction. The
reference number is assigned by the card associations. The reference

number is used to help identify the transaction and is useful for the

cardholder and merchant when doing research. This value is not returned

with all transactions.

AVS_CODE String

Returns the AVS response code from the issuing bank. If performing Address

Verification on card-not-present transactions, this code indicates how well

the AVS information passed in matches what the issuing bank has on file for
the cardholder. Consult the section DevKit Constants for a description of

values that may be returned (see page 141)

ADD_TEXT String

Only supported on Fleet One, this field contains miscellaneous additional

text returned from host. Currently PCCharge will support GetAddText1-
GetAddText4.

RESTRICT_CODE String Note: Only supported on Fleet One. The product restriction code.

TRACE_NUMBER String
The trace number returned from the processor. This value is not returned by

all processing companies.

TRANS_DATE String
Returns the date that the transaction was processed. This value is not
returned by all processing companies.

TRANSACTION_REFERENCE_NUMBER String
Returns the transaction reference number. This value is not returned by all

processing companies.

TICKET String

Returns the ticket number or invoice of the transaction. This value is echoed

back from the original transaction or is generated by PCCharge if one is
required to complete the transaction.

INTRN_SEQ_NUM String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

TRANS_ITEM_NUM String
Returns the Transaction Item number or the number that is associated with
the transaction in the settlement file. This value is not returned by all

processing companies.

TRANSACTION_REFERENCE_NUMBER String
Returns the transaction reference number from the processor. Only for pre-

paid credit cards with Elavon (NOVA).

TBATCH String
Returns the active batch number for the transaction. This value is not
returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 491

Tag Data Type Description - Charge Output File (.oux)

TRANS_ID String
Returns the Transaction Identifier that is returned from the processor. This

value is not returned by all processing companies.

TICODE String
Returns the Transaction Indicator Code that is returned from the processor.
The Transaction Indicator Code is a Validation code for VISA / MasterCard.

This value is not returned by all processing companies.

IND String

Returns the IND code. The IND code is a transaction description code and an

Interchange compliance field. This value is not returned by all processing
companies.

MSI String

Returns the Market Specific Indicator. This value indicates the transaction‘s

market segment. This value is assigned by the card associations and is not

returned with all transactions.

RET String
Returns the Retrieval reference number. This value is not returned by all

processing companies

PEM String
Returns the POS entry mode that is associated with the transaction. This

value is not returned by all processing companies.

PS2000 String
Returns the PS2000 indicator from the processor. This value is not returned
by all processing companies.

TIM String
Returns the Time of the transaction. This value is not returned by all

processing companies.

ACI String
Returns the Authorization Characteristics Indicator is that is provided by the
card associations. This value is stored for settlement.

PROC_RESP_CODE String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

REC String

Returns the record number of the transaction in the reversal file. Will return

-1 if the processor doesn't support reversals. This value is not returned by
all processing companies.

RECEIPT String
Only used for the processor CITI private label cards. CITI private label cards
will return the Receipt Disclaimer to be printed on the bottom of receipts

based off of the Credit Plan Number.

CMRCL_TYPE String
Returns the type of commercial card that was used for the transaction. This

value is not returned by all processing companies.

CVV2_CODE String

Returns the CVV2/CVC2/CID response code from the issuing bank. If
performing CVV2/CVC2/CID validation on card-not-present transactions, this

code indicates if the CVV2/CVC2/CID code passed in matches what the

issuing bank has on file for the cardholder. Consult the section DevKit
Constants for a description of values that may be returned (see page 141)

PURCH_CARD_TYPE String

Returns a flag indicating whether the processor indicated whether the card

was a Purchasing Card or not. This value is not returned by all processing

companies. Valid values: 1 = Purchasing Card, 0 = Otherwise

GRATUITY_AMNT String
Returns the gratuity amount if one is associated with the transaction. This
value is not returned by all processing companies.

GRATUITY_AMNT_EST String
Returns the estimated gratuity if one is associated with the transaction. This

value is not returned by all processing companies.

RESULT_CODE String
Returns a numerical representation of the result of the transaction.
Currently, this field is only used for a batch transaction.

CMRCL_FLAG String

Returns the Commercial Card Flag. This indicates what type of Commercial

card was used for the transaction. This value is not returned by all

processing companies.

NET_ID String
Returns a one character identification code that identifies the network on
which the transaction was approved. This value is not returned by all

processing companies.

AUTH_SRC_CODE String

Returns the Authorization Source Code. The authorization source code

indicates to the processor who authorized the transaction. This value is not
returned by all processing companies.

CARD_ID_CODE String Returns a code that is used to verify the identity of the cardholder.

ACCT_DATA_SRC String Returns the entry method of the transaction.

ECOMM_GOODS_IND String
Returns a value indicating whether the goods sold were digital or physical in

an e-commerce environment.

PCCharge Version 5.9.0
Updated 2/8/2010

 492

Tag Data Type Description - Charge Output File (.oux)

TERMINATION_STATUS String

Returns a value of ―6‖ when a transaction is successful. If anything other

than a ―6‖ is returned then the transaction may have resulted in an error.
This applies to the following processors: GSAR and NBS

CORRELATION_UID
1
 String Returned from Citi, needed for Counter Offer Submission.

PENDING_NUMBER
1
 String Returned from Citi, needed for Counter Offer Submission.

REPLY_FLAG
1
 String „Y‟ or „N‟ sent from Citi to notify message is a reply to an offer.

OPEN_TO_BUY
1
 String

Only present in the response if the ―Display OTB‖ is turned ON. Decimal is

included.

CREDIT_LIMIT
1
 String Only present the in the response. Shows applicant‘s credit limit.

1 These properties are required to process Citi applications. For more information and examples see Citi Credit Plan on page
115.

Note : Integrators will use either the AMOUNT_DUE or the

AUTH_AMOUNT tags to have the POS indicate the remaining purchase

amount to the end user. (Requires Split-Tender/Partial Auth Reversal
enabled within PCCharge)

Note : When total cost of the transaction is covered by the initial

purchase PCCharge will not return AMOUNT_DUE and AUTH_AMOUNT
tags. (Requires Split-Tender/Partial Auth Reversal enabled within
PCCharge)

PCCharge Version 5.9.0
Updated 2/8/2010

 493

Debit File Layouts

This section describes the tags required to process debit transactions.

When processing debit cards, a PINpad is required to allow the customer to enter their PIN. In
addition, debit card information is always collected via a card swipe device, never via keyboard entry.
Because of this, a card reader is also required.

When processing U.S. debit card transactions, merchants have the option of allowing the customer to
receive cash back on a transaction. For instance, the customer purchases $50 of products and wants
$25 cash back, set the Amount to 50.00 and CashBack to 25.00. This will withdraw a total of $75 from
the debit card account, $50 for the products and $25 for cash to give to the customer.

Debit Input File (.inx)

Tag Data Type Description - Debit Input File (.inx)

USER_ID ** String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

TROUTD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to
it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

PROCESSOR_ID *** String

The code for the processing company that will be used to process the
transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed
in the Processing Company Codes section (see page 150).

MERCH_NUM *** String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Debit Card Setup window of PCCharge.
Max Length: 32 characters. This value can be alphanumeric.

ACCT_NUM String
The Debit card number that will be used when processing the transaction.

Max Length: 20 characters. Example: 5424180279791765

EXP_DATE String

The expiration date associated with the Debit card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

Set this property if there is an expiration date associated with the Debit
card.

MANUAL_FLAG String

Flag that indicates whether the transaction was swiped or manually entered.

This property must be set to 1 (swiped) and the TRACK_DATA property must

also be set.

PCCharge Version 5.9.0
Updated 2/8/2010

 494

Tag Data Type Description - Debit Input File (.inx)

TRANS_AMOUNT String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.
Example: Incorrect format ―0001.00‖.

TRACK_DATA String

The track II data captured from the magnetic strip of the card. The track II

data is required. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567
Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

PRINT_RECEIPTS_FLAG String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

TICKET_NUM String

The ticket or invoice number for internal referencing by merchant. This
value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,
lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

CARDHOLDER String The cardholder‘s name. Max Length: 20 characters.

GRATUITY_AMNT String
Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. This is the Gratuity Amount of the transaction.

TXN_TIMEOUT String

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the transaction is submitted to

PCCharge. An error will be returned if the transaction has not finished

processing when the time period expires. It is highly recommended that
integrators review the section Timeouts (see page 59). Note: This tag only

works when using the TCP Interface.

SHIFT_ID String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. The Shift ID. This value is optional. Format:
Alphanumeric Max Length: 1 character.

LANGUAGE_CODE String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Set this to the language that is indicated by the

Language Code that is encoded in the track II data on the customer‘s card.
Valid Values:

―English‖ or ―French‖ (pass in the literal string)

KEY_SERIAL_NUM String

If a Key Serial Number is returned from the PINpad, this property should be

populated with that number. If processing transactions with a PINpad using
DUKPT encryption, this value is sixteen or twenty characters long

(depending on the processor‘s encryption). The PCCharge DevKit provides

several tools for retrieving data from PINpads. If the PCCharge integration
method chosen doesn‘t support these tools or the tools do not support the

PINpad being used, a direct interface to the PINpad must be written by the

integrator. If processing transactions with a Verifone SC5000 PINpad, set
this property to the Chip Serial Number of the PINpad.

CASHBACK_AMNT String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in TRANS_AMOUNT property. For example, if the
total amount of the sale is $10 and the customer has requested $5 cash back,

TRANS_AMOUNT should be set to $10 and CASHBACK_AMNT should be set to

$5. The CASHBACK_AMNT property should be formatted the same the

TRANS_AMOUNT property. Max Length: 9 characters. Note: Some debit
processors do not support the cash back feature.

PCCharge Version 5.9.0
Updated 2/8/2010

 495

Tag Data Type Description - Debit Input File (.inx)

PIN_BLOCK String

The encrypted PIN block that is retrieved from the PINpad. The PIN is

provided to the processor for verification. Length: 16 characters. The
PCCharge DevKit provides several tools for retrieving data from PINpads. If

the PCCharge integration method chosen doesn‘t support these tools or the

tools do not support the PINpad being used, a direct interface to the PINpad

must be written by the integrator.

MAC_BLOCK String

Only supported by Global Payments East (NDC) Canadian Debit and the

Verifone SC5000 PINpad. Set this to the MAC Block value returned by the

PINpad.

DEBIT_TYPE String

Only supported by Global Payments East (NDC) Canadian Debit and the
Verifone SC5000 PINpad. Set this to the bank account type that the customer

specified when entering transaction data into the PINpad.

 Valid Values: ―Chequing‖ or ―Savings‖

ORIG_PURCH_DATA String
The Original Purchase Data. Used when performing a Debit Return with the
processors TSYS, Heartland, RBS WorldPay, and NPC. This is the original

transaction date. Format: DDMMhhmm

BILLPAY String

Only valid for Visa debit and credit transactions. It is used to indicate the

transaction is being ran for payment of a bill (ultilty, monthly gym dues,
etc.) Valid values:

0 – Non-Bill payment transaction

1 – Bill payment transaction

REFERENCE String
NBS/ Fleet One cards require a Reference Number to be sent with each
transaction. This is a minimum of 2 digits and a max of 15. This must be all

numeric.

RFID String

Set to 1 if card information was read from RFID (Radio Frequency

Identification) device. If card was read from from RFID, track data must be
populated and manual flag must be set to 1. Set to 0 otherwise.

CASHIER_NAME String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

PRODUCT_DETAIL_CODE_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 NBS supports using 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

Example:
<PRODUCT_DETAIL_CODE_1>TESTLINE1</PRODUCT_DETAIL_CODE_1>

<PRODUCT_DETAIL_CODE_2>TESTLINE2</PRODUCT_DETAIL_CODE_2>

<PRODUCT_DETAIL_CODE_3>TESTLINE3</PRODUCT_DETAIL_CODE_3>

 These properties are required to process a Debit Sale transaction.

 These properties are required to process a Canadian Debit Sale transaction using Global Payments East (NDC) and the SC5000

PINpad.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

*** If the ―Use Default Processor‖ option is enabled in the PCCharge preferences, and the PROCESSOR_ID and MERCH_NUM
properties are omitted from the transaction request, PCCharge will process all transactions using the ―Default Processor‖. The

―Default Processor‖ is defined as the first merchant number that is set up PCCharge. Consult the Multi-Merchant Support

section (see page 68) for more information on the ―Use Default Processor‖ option. In addition, PROCESSOR_ID and MERCH_NUM
should not be set when doing follow-on transactions. Refer to the section Follow On Transactions (see page 70) for more

information.

Debit Output File (.oux)

Tag Data Type Description - Debit Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file

format, max 8 characters.

PCCharge Version 5.9.0
Updated 2/8/2010

 496

Tag Data Type Description - Debit Output File (.oux)

MERCH_NUM String
Returns the merchant number that was specified in the MerchantNumber

property.

TROUTD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD
is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the

section Follow On Transactions (see page 70) for more information.

RESULT String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

AUTH_CODE String

For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was

rejected.

REFERENCE String

Returns the reference number associated with the transaction. The
reference number is used to help identify the transaction and is useful for

the cardholder and merchant when doing research. This value is not

returned with all transactions.

TRANS_DATE String
Returns the date that the transaction was processed. This value is not
returned by all processing companies.

TICKET String

Returns the ticket number or invoice of the transaction. This value is echoed

back from the original transaction or is generated by PCCharge if one is

required to complete the transaction.

INTRN_SEQ_NUM String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

TRANS_ITEM_NUM String

Returns the Transaction Item number or the number that is associated with

the transaction in the settlement file. This value is not returned by all
processing companies.

TBATCH String
Returns the active batch number for the transaction. This value is not

returned by all processing companies.

TRANS_ID String
The TRANS_ID field returns the Working key (15 + 1 from TICode) that was
provided by the processor. This field is only used for Master Session

encryption, which is only supported by Elavon (NOVA).

TICODE String
The TICODE field contains the last byte of the Working key that is provided
by the processor.

TIM String
Returns the Time of the transaction. This value is not returned by all

processing companies.

NET_ID String
Returns a one-character identification code that identifies the network on
which the transaction was approved.

AUX_RESP_CODE String When using the SC5000 PINpad, returns the ISO response code

PCCharge Version 5.9.0
Updated 2/8/2010

 497

Check File Layouts

This section describes the tags required to process check transactions.

Check Input File (.inx)

Tag Data Type Description - Check Input File (.inx)

USER_ID ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

TROUTD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

PROCESSOR_ID String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

MERCH_NUM String

The Merchant Number. This number is issued to the merchant by the
Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Check Services Setup window of PCCharge.

Max Length: 32 characters. This value can be alphanumeric.

ACCT_NUM String
For Check, MICR, or Double ID: The account number that will be used when
processing the transaction. Max Length: 20 characters.

MANUAL_FLAG String
Flag that indicates whether the transaction was manually entered or swiped.

Valid values: 0 = manual transaction, 1 = swiped transaction

TRANS_AMOUNT String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero

place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).
Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

PRINT_RECEIPTS_FLAG String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

ZIP_CODE String
The check writer‘s ZIP code. Max Length: 9 characters. Format: digits only.
This value is required for COD transactions. Note: If submitting the 9-digit

zip, do not include the dash.

TICKET_NUM String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing
purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all processors support alphanumeric characters. Note: When using NDC,

lower case characters must not be used in the ticket number. Note: When
using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

PCCharge Version 5.9.0
Updated 2/8/2010

 498

Tag Data Type Description - Check Input File (.inx)

MULTI_FLAG String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this
value will override the corresponding value in the PCCharge GUI. Note that

PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page
67). This Flag has no effect if processing will occur over IP or leased line.

TXN_TIMEOUT String

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the transaction is submitted to

PCCharge. An error will be returned if the transaction has not finished
processing when the time period expires. It is highly recommended that

integrators review the section Timeouts (see page 59). Note: This tag only

works when using the TCP Interface.

CASHBACK_AMNT String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total

amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some processors do not support the cash

back feature.

CHECK_TYPE String
Valid Values: 0 = Personal, 1 = Business Note: Used only for processor
TECK. Cannot be accessed in the PCCharge GUI.

CUSTOMER_NAME String
The first and last name of the customer. Note: Used only for processor

TECK. Cannot be accessed in the PCCharge GUI.

CUSTOMER_CITY String
The customer‘s city. Note: Used only for processor TECK. Cannot be
accessed in the PCCharge GUI.

CHECK_READER_CODE Enum

Passes the type of Check Reader that is being used. Currently only used by

Telecheck and will only be set if TECK is the set processor. Cannot be

configured in the PCCharge GUI. Valid Values:
001 - Magtek mini micr

002 - EnCheck 3000

003 - IVI 2500

004 - IVI 430
005 - IVI 431

006 - ICE 5700

007 - MagtekImager
008 - VeriFone CR1000i

009 - Epson - TMH6000

010 - Epson - TMH6000Imager
011 - WelchAllyn ScanTeam 8300

012 - VeriFone CR600

013 - Magtek Imager with Modem

014 - IBM 4610 reader/printer
015 - Ingenico EC2600

016 - RDM EC5000

017 - RDM EC6000
018 - NCR 7158 and 7167

 019 - LS 100

 020 = MagTek Excella

 021 = MagTek Excella (DL Capture & F&B check images)
 022 = VeriFone Model Quartet

CUSTOMER_STREET String
The street address of the customer. Note: Used only for processor TECK.
Cannot be accessed in the PCCharge GUI.

MICR String
The raw MICR data from the bottom of the check. Used for conversion

transactions.

MICR_READER_STATUS String

Valid Values: 15 = Valid read by MICR reader, 15I = Valid read by MICR

reader with imaging capability, 9 = Manual only Note: Used only for
processor TECK. Cannot be accessed in the PCCharge GUI.

STATE String
The state code of the state that issued the check writer‘s driver‘s license.

The state code is required for DL (Driver‘s License). Format: 2 characters.

LICENSE String
The driver‘s license number of the individual writing the check. Max Length:
20 characters. The driver‘s license is required for DL (Driver‘s License)

transactions and when performing Double ID transactions.

PCCharge Version 5.9.0
Updated 2/8/2010

 499

Tag Data Type Description - Check Input File (.inx)

DL_TRACK_II String
The parsed TrackII data from the driver‘s license. Note: Used only for

processor TECK. Cannot be accessed in the PCCharge GUI.

ABA_NUM String

The Transit Routing Number / ABA number that will be used when processing
the transaction. This value indicates which bank issued the check. Max

Length: 9 characters. This value is required for MICR transactions and when

performing Double ID transactions.

PHONE_NUM String
The phone number of the individual writing the check. Max Length: 7 digits.
Format: digits only. The phone number is required for COD (Checks On

Delivery).

DOB String

The date of birth of the check writer. Length: Exactly six characters.

Format: MMDDYY. The birth date is required for DL (Driver‘s License) check
transactions.

CHECK_NUM String
The check number of the check that will be used when processing the

transaction. Max Length: 10 characters.

MANAGER_NUM String Manager Number

CASHIER_NUM String The Cashier Number

CASHIER_NAME String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

Note: To perform Double ID, both the MICR and LICENSE fields must be populated.

 These properties are required, regardless of service type.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

 COD -- required for Checks-On-Delivery

 DL -- required for Driver‘s License

 MICR -- required for MICR

Check Output File (.oux)

Tag Data Type Description - Check Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file

format, max 8 characters.

MERCH_NUM String
Returns the merchant number that was specified in the MerchantNumber

property.

TROUTD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

TRANS_ID String Only for TECK. Returns the Trace ID associated with the transaction.

RESULT String
Returns the result, which indicates the transaction‘s status upon completion.
Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

RETURN_CHECK_FEE String
Returns the response from the processor which indicates the fee for returned

checks. Note: Only used for the processor TECK

RETURN_CHECK_NOTE String
Returns the response from the processor which displays a note for returned
checks. Note: Only used for the processor TECK

AUTH_CODE String

For approved transactions, returns the authorization code from the issuing

bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was
rejected.

TICKET String

Returns the ticket number or invoice of the transaction. This value is echoed

back from the original transaction or is generated by PCCharge if one is

required to complete the transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 500

Tag Data Type Description - Check Output File (.oux)

INTRN_SEQ_NUM String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

PROC_RESP_CODE String
Returns the response code that is provided by the processor. This value is not

returned by all processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 501

EBT File Layouts

This section describes the tags required to process EBT transactions.

When processing EBT cards, a PINpad is required to allow the customer to enter their PIN. In addition,
debit card information is always collected via a card swipe device, never via keyboard entry. Because
of this, a card reader is also required. (Some EBT transactions can be manually entered).

When processing EBT card transactions, merchants have the option of allowing the customer to receive
cash back on a transaction. For instance, the customer purchases $50 of products and wants $25 cash
back, set the Amount to 50.00 and CashBack to 25.00. This will withdraw a total of $75 from the EBT
card account, $50 for the products and $25 for cash to give to the customer.

EBT Input File (.inx)

Tag Data Type Description - EBT Input File (.inx)

USER_ID ** String

Sets the PCCharge user name associated with the transaction. The user name
must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String
The action code that identifies what type of transaction will be performed.
Consult the section DevKit Constants for a list of valid values (see page 141).

TROUTD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to
it. This property must be set when performing Follow-on Transactions.

Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

PROCESSOR_ID String

The code for the processing company that will be used to process the
transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed
in the Processing Company Codes section (see page 150).

MERCH_NUM String

The Merchant Number. This number is issued to the merchant by the

Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the EBT Card Setup window of PCCharge. Max
Length: 32 characters. This value can be alphanumeric.

ACCT_NUM String
The EBT card number that will be used when processing the transaction. Max

Length: 20 characters. Example: 5424180279791765

EXP_DATE String

The expiration date associated with the EBT card number that will be

processed. Must be exactly four characters long. Format: MMYY Example:
1208

Set this property if there is an expiration date associated with the EBT card.

MANUAL_FLAG String

Flag that indicates whether the transaction was swiped or manually entered.
This property must be set to 1 (swiped) for swiped EBT transactions. If the

transaction was swiped, the TRACK_DATA property must also be set. If

performing a manually keyed EBT transaction, such as a Force or Voucher,
set this property to 0 (manually entered).

PCCharge Version 5.9.0
Updated 2/8/2010

 502

Tag Data Type Description - EBT Input File (.inx)

TRANS_AMOUNT String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9
characters, including the decimal. The value may not be negative. Do not

use commas.

Note: The amount MUST include the decimal point and the cents even if the
amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System

Error Codes and Descriptions for a list of valid errors that will be returned
(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only

transaction. An error will be returned if a dollar amount is padded with

leading zeroes.
Example: Incorrect format ―0001.00‖.

TRACK_DATA String

The track II data captured from the magnetic strip of the card. The track II

data is required for swiped EBT transactions. Max Length: 40 characters.

Example: 5424180279791765=08121011000001234567
Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

PRINT_RECEIPTS_FLAG String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

ZIP_CODE String

The ZIP_CODE stores the reference number from the original transactions.
Some processor all a type of void and for these transactions a reference

number must be provided. For Chase Paymentech EBT, the auth code goes in
the zip field for voucher transactions.

TICKET_NUM String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing

purposes. Max Length: 9 characters. The value can be alphanumeric. Note:
Not all processors support alphanumeric characters. Note: When using NDC,

lower case characters must not be used in the ticket number. Note: When

using Elavon (NOVA), ticket numbers can only be alphanumeric, no hyphens.

CARDHOLDER String The cardholder‘s name. Max Length: 20 characters.

EBT_TYPE String
Indicates what type of EBT transaction will be performed. Valid Values: F –

Food stamp transaction; C – Cash benefits transaction

TXN_TIMEOUT String

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the transaction is submitted to

PCCharge. An error will be returned if the transaction has not finished
processing when the time period expires. It is highly recommended that

integrators review the section Timeouts (see page 59). Note: This tag only

works when using the TCP Interface.

AUTH_CODE String
For an EBT Post (Prior Auth Sale) or Force transaction: The Authorization
code from the original voice authorization.

KEY_SERIAL_NUM String

If a Key Serial Number is returned from the PINpad, this property should be

populated with that number. This value is only applicable for PINpads using

DUKPT encryption. This value is sixteen or twenty characters long
(depending on the processor‘s encryption). The PCCharge DevKit provides

several tools for retrieving data from PINpads. If the PCCharge integration

method chosen doesn‘t support these tools or the tools do not support the
PINpad being used, a direct interface to the PINpad must be written by the

integrator.

CASHBACK_AMNT String

The amount of cash back that the customer will receive. This amount is in

addition to value entered in Amount property. For example, if the total
amount of the sale is $10 and the customer has requested $5 cash back,

Amount should be set to $10 and CashBack should be set to $5. The

CashBack property should be formatted the same the Amount property.
Max Length: 9 characters. Note: Some debit processors do not support the

cash back feature.

PCCharge Version 5.9.0
Updated 2/8/2010

 503

Tag Data Type Description - EBT Input File (.inx)

PIN_BLOCK String

The encrypted PIN block that is retrieved from the PINpad. The PIN is

provided to the processor for verification. Length: 16 characters. The
PCCharge DevKit provides several tools for retrieving data from PINpads. If

the PCCharge integration method chosen doesn‘t support these tools or the

tools do not support the PINpad being used, a direct interface to the PINpad

must be written by the integrator.

EBT_VOUCHER_NUM String

The voucher number for an EBT force transaction. The voucher is provided

by the processor at the time of authorization and must be supplied to clear

the voucher.

RFID String
Set to 1 if card information was read from RFID (Radio Frequency
Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

PRODUCT_DETAIL_CODE_XX String

Note: This is the number of items for

RODUCT_DETAIL_PRODUCT_CODE_XX. PCCharge will support 1 – 10.

 BAMS Tandem (NPC) supports using 1 – 3.

Example:
<PRODUCT_DETAIL_CODE_1>TESTLINE1</PRODUCT_DETAIL_CODE_1>

<PRODUCT_DETAIL_CODE_2>TESTLINE2</PRODUCT_DETAIL_CODE_2>

<PRODUCT_DETAIL_CODE_3>TESTLINE3</PRODUCT_DETAIL_CODE_3>

 These fields are required to process a transaction.

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they
should be implemented.

EBT Output File (.oux)

Tag Data Type Description - EBT Output File (.oux)

USER_ID String
Returns the User name that is associated with the transaction. This value is
echoed back from the original transaction. The User name will be in DOS file

format, max 8 characters.

MERCH_NUM String
Returns the merchant number that was specified in the MerchantNumber

property.

TROUTD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

RESULT String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

AUTH_CODE String

For approved transactions, returns the authorization code from the issuing
bank. For declined transactions, returns the reason why the transaction was

declined (if the issuing bank provides one) or why the transaction was

rejected.

REFERENCE String

Returns the reference number associated with the transaction. The
reference number is used to help identify the transaction and is useful for

the cardholder and merchant when doing research. This value is not

returned with all transactions.

TRANS_DATE String
Returns the date that the transaction was processed. This value is not
returned by all processing companies.

TICKET String

Returns the ticket number or invoice of the transaction. This value is echoed

back from the original transaction or is generated by PCCharge if one is

required to complete the transaction.

INTRN_SEQ_NUM String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

TRANS_ITEM_NUM String

Returns the Transaction Item number or the number that is associated with

the transaction in the settlement file. This value is not returned by all
processing companies.

PCCharge Version 5.9.0
Updated 2/8/2010

 504

Tag Data Type Description - EBT Output File (.oux)

TBATCH String
Returns the active batch number for the transaction. This value is not

returned by all processing companies.

TRANS_ID String
The TRANS_ID field returns the Working key (15 + 1 from TICode) that was
provided by the processor. This field is only used for Master Session

encryption, which is only supported by Elavon (NOVA).

TICODE String
The TICODE field contains the last byte of the Working key that is provided

by the processor.

TIM String
Returns the Time of the transaction. This value is not returned by all
processing companies.

NET_ID String
Returns a one character identification code that identifies the network on

which the transaction was approved.

EBT_FOOD_BALANCE String
Returns the remaining balance on a Food Stamp card. This value is not
returned by all processing companies.

EBT_CASH_BALANCE String
Returns the remaining balance on a Cash Benefits card. This value is not

returned by all processing companies.

CASHIER_NAME String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

PCCharge Version 5.9.0
Updated 2/8/2010

 505

Gift File Layouts

This section describes the tags required to process Gift/Loyalty transactions.

Gift Input File (.inx)

Tag Data Type Description - Gift Input File (.inx)

USER_ID ** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

TROUTD String

The TroutD (Transaction Routing ID) is used when performing ―Follow On‖

transactions. The TroutD is a PCCharge-assigned unique identifier that will

be associated with a transaction and any subsequent transactions related to

it. This property must be set when performing Follow-on Transactions.
Review the section Follow On Transactions (see page 70) for important

information on implementing TroutD support.

TICKET String

The ticket or invoice number for internal referencing by merchant. This

value is stored by PCCharge and passed to the processor for referencing
purposes. Max Length: 9 characters. The value can be alphanumeric. Note:

Not all gift processors support ticket numbers.

PROCESSOR_ID String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be
capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed

in the Processing Company Codes section (see page 150).

MERCH_NUM String

The Merchant Number. This number is issued to the merchant by the
Processor or the Merchant Services Provider. The value set in this property

must match what is set up in the Gift Card Setup window of PCCharge. Max

Length: 32 characters. This value can be alphanumeric.

ACCT_NUM String
The gift card number that will be used when processing the transaction. Max
Length: 20 characters.

EXP_DATE String

The expiration date associated with the gift card that will be processed. Must

be exactly four characters long. Format: MMYY Example: 1208 Note: Most
gift cards do not have an expiration date.

MANUAL_FLAG String

Flag that indicates whether the transaction was manually entered or swiped.

If the transaction was swiped, the TRACK_DATA property must also be set.

Valid values: 0 = manual transaction, 1 = swiped transaction

TRANS_AMOUNT String

The amount of the transaction. Format: DDDDDD.CC. Max Length: 9

characters, including the decimal. The value may not be negative. Do not
use commas.

Note: The amount MUST include the decimal point and the cents even if the

amount is a whole dollar amount.

Example: ―3.00‖, not ―3‖ or ―3.‖. If sending less than one dollar, the zero
place holder must be sent as well.

Example: ―0.50‖. If the amount is set to an incorrect format, the Error

event will fire after calling the Send method. Consult the section System
Error Codes and Descriptions for a list of valid errors that will be returned

(see page 148).

Note: Only add a zero to the front of the amount in the case of a cents-only
transaction. An error will be returned if a dollar amount is padded with

leading zeroes.

Example: Incorrect format ―0001.00‖.

For Valuelink (VLNK) Balance Adjustment: Format: +/-DDDDD.CC.

TRACK_DATA String

The track II data captured from the magnetic strip of the card.. Max

Length: 40 characters.
Example: 5424180279791765=08121011000001234567

Note: The characters that are appended to the beginning and ending of track

II (usually ; and ?) should not be passed in.

PCCharge Version 5.9.0
Updated 2/8/2010

 506

Tag Data Type Description - Gift Input File (.inx)

PRINT_RECEIPTS_FLAG String

The number of receipts that PCCharge should print for the transaction. This

value will override the corresponding value in the PCCharge GUI. PCCharge

will retain this value for subsequent transactions. Valid values: 0-9. Setting

the property to 0 will disable receipt printing.

MULTI_FLAG String

Flag that indicates whether PCCharge should leave the modem connection

open in anticipation of other transactions that will follow shortly. If set, this

value will override the corresponding value in the PCCharge GUI. Note that
PCCharge can only keep the connection open as long as is allowed by the

processing company. Valid values: 1 = TRUE, 0 = FALSE Default

value: 0. See the section Multi-trans Wait for more information (see page

67). This Flag has no effect if processing will occur over IP or leased line.

GRATUITY_AMNT String The tip amount if it is a VTEC or VLNK restaurant transaction.

PROMO_CODE String
Used for GVEX: A code defined by the merchant that affects the calculation

from amount and units to points.

CASHIER_NUM String The numeric Cashier ID for VTEC and VLNK processors.

IND_TYPE String
For VTEC: Flag indicating the industry. Valid Values: 1 = retail, 2 =

restaurant

GIFT_PIN String
Only used for the processor SVS. Used for only for virtual gift card

transactions.

GIFT_UNITS String
The Units for points transactions. Note: Only Givex supports Points

transactions.

GIFT_SEQ_NUM String Stores the card sequence number for GSAR transactions.

TOT_NUM_CARDS String
the total number of cards for multiple issuance for Chase Paymentech. The

refund amount for VTEC‘s deactivate transaction.

SOURCE_ACCT_NUM String
For VTEC replace transaction, VLNK Balance Merge and Balance Transfer, the

field should be set to the account number of the old card.

FORCE_FLAG String
Flag indicating whether the transaction should be forced for Chase
Paymentech. Valid Values: 1 – force, 0 – don‘t force

PARTIAL_REDEMPTION_FLAG String
For GSAR: Flag indicating whether the transaction is a partial redemption

transaction.

LOYALTY_FLAG String

Flag indicating whether the transaction is a loyalty transaction for VTEC
transactions.

Valid Values:

1 – True

0 - False

REFUND_FLAG String

Flag that indicates whether to provide the customer a refund when

performing a VTEC Deactivate transaction. Valid Values:

1 – Provide refund

0 – Do not provide refund
Note: This flag should only be set to 1 for a Valutec deactivate if the

LOYALTY_FLAG is set to 0. Valutec does not support deactivate with refund

for loyalty cards.

RFID String
Set to 1 if card information was read from RFID (Radio Frequency
Identification) device. If card was read from from RFID, track data must be

populated and manual flag must be set to 1. Set to 0 otherwise.

VIRTUAL_GIFTCARD_FLAG Boolean
Only used for the processor SVS. 0 - False, 1 - True – Only sent on an

activation to determine if a pin should be returned.

CASHIER_NAME String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

SKU_LOYALTY String

GIVEX ONLY – Integration Only

Pass this tag in order to send product codes, quantities and amounts for

loyalty transactions.
Format:

Single Product Code:

<SKU_LOYALTY>Product Code,Amount,Quantity</SKU_LOYALTY>

Multi-Product Codes (Separated with a semi-colon):
<SKU_LOYALTY>Product Code,Amount,Quantity; Product

Code,Amount,Quantity</SKU_LOYALTY>

 These properties are required to process a gift card redemption or sale transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 507

 Required for VTEC gift card transactions

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators

review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

PCCharge Version 5.9.0
Updated 2/8/2010

 508

Gift Output File (.oux)

Tag Data Type Description - Gift Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file

format, max 8 characters.

MERCH_NUM String
Returns the merchant number that was specified in the MerchantNumber
property.

TROUTD String

Returns the TroutD (Transaction Routing ID) for the transaction. The TroutD

is a PCCharge-assigned unique identifier that is associated with the

transaction throughout its ―lifespan‖. This number is stored in the TroutD

field in the PCCharge database (PCCW.MDB) for each transaction. See the
section Follow On Transactions (see page 70) for more information.

RESULT String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

AUTH_CODE String

The Auth Code field serves many purposes. For a GVEX Balance transaction

returns the balance remaining on a gift card. For all other GVEX transactions,

returns the transaction reference/Error message. For VTEC, returns the Auth

Code. For a VTEC Batch function: returns the number of sales done that day
and the total amounts of sales in the following format <# of transaction>,

<amount>. For a VLNK transaction returns the authorization code or

transaction response description.

REFERENCE String

The Reference field serves many purposes. For a GVEX Register transaction
returns the first eleven digits of an account number. For a VTEC batch

function, returns the number of activations done that day and the total

amounts of activations in the following format <# of transaction>,
<amount>.>. For all other VTEC transactions, returns the account‘s

remaining balance. For a VLNK transaction returns the previous balance

(balance before transaction was applied). For a BPS Redemption transaction,
returns the retrieval reference number.

TICKET String

For a VTEC batch function, returns the account‘s Deactivates. Data is

returned in the format <# of transactions>, <amount>. For all other VTEC

transactions, returns the account‘s remaining loyalty points. For a GSAR
transaction returns the trace number. For a VLNK Activation or Reload

transaction, returns the redemption amount. For a VLNK Redemption,

Redemption Unlock, or Cash-out transaction, returns the cashback amount.

For a VTEC batch function: returns the number of gift card that has been
de-activated that day and the total amounts of de-activations in the

following format <# of transaction>, <amount>.>.

INTRN_SEQ_NUM String

Returns the Internal Sequence Number, which is a PCCharge-assigned unique

number for each transaction. This number is stored in the Number field in

the PCCharge database (PCCW.MDB) for each transaction.

TRANS_ID String

For a GVEX Register transaction, the remaining digits of a gift card number.

For a GVEX Redemption, Increment, and Cancel, the balance remaining on a

gift card. For a VTEC batch function, the number Add Value Transactions
done that day and the total amounts of Add Value in the following format <#

of transaction>, <amount>.>.

For a VLNK or GSAR transaction, returns the previous balance (balance after

transaction was applied).

RET String

For VLNK, returns trace number (generated by VLNK host). For GVEX, returns

the point balance. For a VTEC batch function: returns the number of Gift

Transactions Voids performed that day.

ACTIVATION_COUNT String Returns the number of activations in the current batch

ACTIVATION_TOTAL_AMOUNT String Returns the total dollar amount of activations in the current batch

ADDPOINTS_COUNT String Returns the number of AddPoints Transactions in the current batch

ADDPOINTS_TOTAL_AMOUNT
String Returns the total dollar amount of AddPoints transactions in the current

batch

ADDVALUE_COUNT String Returns the number of AddValue transactions in the current batch

ADDVALUE_TOTAL_AMOUNT
String Returns the total dollar amount of AddValue transactions in the current

batch

PCCharge Version 5.9.0
Updated 2/8/2010

 509

Tag Data Type Description - Gift Output File (.oux)

AMOUNT_DUE
String Used in partial redemption transactions where only part of the amount was

authorized. Returns the remainder amount that is owed to the merchant.

AUTH_AMOUNT String
Used in partial redemption transactions where only part of the amount was
authorized. Returns the actual authorized amount.

BALANCE_TRANSFER_COUNT String Returns the number of Balance Transfers in the current batch

BALANCE_TRANSFER_TOTAL_AMOU

NT
String Returns the total dollar amount of Balance Transfers in the current batch

CASHBACK String
Used in redemption for remaining balance transactions where the transaction
amount is so close to the balance of the card that the entire balance is

authorized. Returns the remainder that is owed to the customer.

CREDIT_COUNT String Returns the number of credits in the current batch

CREDIT_TOTAL_AMOUNT String Returns the total dollar amount of credits in the current batch

GIFT_CARD_BALANCE String Returns the gift card balance.

GIFT_PIN String Returns the gift pin. Used only for virtual gift cards.

POINTS_COUNT String Returns the number of points transactions in the current batch

POINTS_TOTAL_AMOUNT String Returns the total dollar amount of points transactions in the current batch

PROC_RESP_CODE String Returns the processor response code

SALE_COUNT String Returns the number of redemptions in the current batch

SALE_TOTAL_AMOUNT String Returns the total dollar amount of redemptions in the current batch

TIP_COUNT String Returns the number of Tip transactions in the current batch

TIP_TOTAL_AMOUNT String Returns the total dollar amount of Tip transactions in the current batch

TRANS_DATE_TIME String Returns the transaction date and time when passed back by a processor.

VOID_BALANCE String Returns the Void Balance

VOID_COUNT String Returns the number of voids in the current batch

VOID_TOTAL_AMOUNT String Returns the total dollar amount of Voids in the current batch

LEVEL String Returns the customer's loyalty level. Only used for VTEC loyalty gift cards.

<PRE_AUTH_COUNT> String
Only for GAPI, this returns the total number of gift card pre-auth

transactions processed that day.

<PRE_AUTH_TOTAL_AMOUNT> String
Only for GAPI , this returns the total amount of gift card pre-auth

transactions processed that day

<POST_AUTH_COUNT> String
Only for GAPI, this returns the total number of gift card post-auth

transactions processed that day.

<POST_AUTH_TOTAL_AMOUNT> String
Only for GAPI, this returns the total amount of the post-auth transactions
processed that day.

<ISSUANCE_COUNT> String Only for GAPI, this returns the total number of gift cards issued that day.

<ISSUANCE_TOTAL_AMOUNT> String Only for GAPI, returns the total amount of the gift cards issued that day.

<DEACTIVATE_COUNT> String Only for GAPI, this returns how many gift cards where deactivated that day.

<DEACTIVATE_TOTAL_AMOUNT> String
Only for GAPI, this returns the total amount of gift card deactivations that

day.

<BALANCE_ADJUST_COUNT> String
Only for GAPI, this returns the number of gift cards that were balance

adjusted that day.

<BALANCE_ADJUST_TOTAL_AMOUN

T>
String

Only for GAPI, this returns the total amount of balance adjustments on gift

cards that day.

<BALANCE_MERGE_COUNT> String
Only for GAPI, this returns the total number of gift cards that were balance
merged that day.

<BALANCE_MERGE_TOTAL_AMOUNT

>
String

Only for GAPI, this returns the total amount of gift card balance merges that

day.

<REPORT_LOST_STOLEN_COUNT> String Only for GAPI, returns the total reported stolen or lost gift cards that day.

<REPORT_LOST_STOLEN_TOTAL_A

MOUNT>
String

Only for GAPI, returns the total amount of all stolen or reported lost gift
cards that day.

<CASHOUT_TOTAL_AMOUNT> String
Only for GAPI, returns the total amount of all cashout transactions processed

that day.

<CASHOUT_COUNT> String
Only for GAPI, returns the total number of the cashout transactions
processed that day.

PCCharge Version 5.9.0
Updated 2/8/2010

 510

Tag Data Type Description - Gift Output File (.oux)

<REACTIVATE_COUNT> String
Only for GAPI, returns the total number of gift cards that have been

reactivated that day.

<REACTIVATE_TOTAL_AMOUNT> String
Only for GAPI, the total amount of all gift cards that have been reactivated
that day.

VeriFone Stored Value API (GAPI)

The VeriFone Stored Value API (GAPI) is a proprietary specification that allows for stored value card
processors to add themselves to PCCharge. Applications using GAPI can also integrate with PCCharge
using the various integration methods. For more information on adding a stored value card processor
to PCCharge, and how to obtain the VeriFone Stored Value API, please contact VeriFone sales at 1-800-
725-9264.

PCCharge Version 5.9.0
Updated 2/8/2010

 511

Batch File Layouts

This section describes the tags required to perform batch/settlement functions.

Batch Input File (.inx)

Tag Data Type Description - Batch Input File (.inx)

USER_ID** String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String
The action code that identifies what type of transaction will be performed.

Consult the section DevKit Constants for a list of valid values (see page 141).

PROCESSOR_ID String

The code for the processing company that will be used to process the

transaction. This value can be no more than four characters and must be

capitalized. The processor specified in this property must be set up with a

valid merchant number in PCCharge. A list of valid processor codes are listed
in the Processing Company Codes section (see page 150).

MERCH_NUM String

Sets the Merchant Number issued by the processor that identifies the

account. The merchant number must be setup in the Credit Card Setup

section of PCCharge.

SPLIT_PROCESSOR_FLAG String
Only used when settling the processor CITI for private label transactions. Set

this property to the main credit card processor ID code being used.

TXN_TIMEOUT String

The number of seconds after which a timeout error will be returned from

PCCharge. The count will start when the settlement is submitted to
PCCharge. An error will be returned if the settlement has not finished

processing when the time period expires. It is highly recommended that

integrators review the section Timeouts (see page 59). Note: This tag only

works when using the TCP Interface.

BATCH_CLOSE_TYPE String

Flag that determines what type of batch close will occur. This flag only

supported by FDMS Atlanta and Fifth-Third when using action code 30 or 31

Valid values:

1 – Standard End of Day Batch Close (Default)

2 – Shift Close
3 – Fifth-Third Terminal Based Batch Close of Debit, EBT, or Gift

CASHIER_NAME String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

BATCH_NUMBER String

Submit batch number that was returned on the AMEX split dial settlement,
needs to be passed when performing the following Action Codes:
35 – Reverse Batch

36 – Resubmit Batch

37 – Get Results

38 – Finalize Batch

** The user name is used to keep the transaction associated with the correct terminal. It is highly recommended that integrators
review the Multi-User Support section (see page 62). This section contains detailed information about user names and how they

should be implemented.

PCCharge Version 5.9.0
Updated 2/8/2010

 512

Batch Output File (.oux)

Tag Data Type Description - Batch Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file

format, max 8 characters.

MERCH_NUM String
Returns the merchant number that was specified in the MerchantNumber
property.

RESULT String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

AUTH_CODE String

The AUTH_CODE field returns the status of the batch. If the batch was
successfully closed this status will indicate that, if the batch was not closed

and there was a problem, it will return the response from the processor. For
example, if TSYS sends back a rejected batch response this method will

return the RB# number that TSYS returns.

DEBIT_COUNT String
The number of debit transactions in the batch. This value is not returned by

all processing companies.

DEBIT_TOTAL_AMOUNT String
The total amount of the debit transactions in the batch. This value is not

returned by all processing companies.

REFERENCE String
The reference field returns the response from the processor if the response is

a declined. This field is not returned for all processors.

TRANS_DATE String
The Transaction Date field returns the error code from the processor if one is
provided for a declined transaction. All processors do not support this field.

INTRN_SEQ_NUM String
The INTRN_SEQ_NUM field returns the dollar amount that was settled in the
batch or is waiting to be settled in the open batch.

TRANS_ID String

The Trans Identifier field returns the Settlement number that is stored in

association with the transaction in PCCharge‘s database. This number is not

returned from the processor but is PCCharge‘s internal sequencing number
scheme.

TICODE String
The TICode field returns the number of transactions that are in the batch for

which the function was performed.

RET String

The RET field is only used for Inquiries, Action 30, and returns the number of

batches that will be settled for a particular merchant number. For Example,
if a merchant account is setup as TSYS using TCP/IP, there is a limitation on

how many transactions can be sent across on a single batch, so PCCharge

breaks the batch up into smaller batches. The RET field returns the number
of smaller batches that would be created for that merchant account.

PROC_RESP_CODE String
Returns the response code that is provided by the processor. This response

code is not provided for all credit card processors.

RESULT_CODE String Returns a numerical representation of the result of the transaction.

BATCH_NUMBER String After a terminal-based batch settles, returns the batch number.

RECORD_COUNT String

TERMINATION_STATUS String

Termination Status returns a ―6‖ upon successful settlement. If anything

other than a ―6‖ is returned there may be an issue with the settlement file

and should be investigated. This applies to : GSAR, Elavon (NOVA), and NBS

Response:
6 = Batch Settled and file has been deleted.

8 = Batch Settled, but the file is locked and cannot be deleted.

Note: In the event there are multiple batches waiting to be settled in one settlement, the integrated
application will need to be designed to loop through the settlement response to retrieve the response
for each batch.

PCCharge Version 5.9.0
Updated 2/8/2010

 513

Report File Layouts

This section describes the tags required to submit report requests.

Report Input File (.inx)

Tag Data Type Description - Report Input File (.inx)

USER_ID String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String

The action code that identifies what type of report will be requested. Valid

Values: 81-84. Example: If running a credit card detail report, set the action

code to ―81‖. Consult the section DevKit Constants for a list of valid values

(see page 141).

MERCH_NUM String

Merchant Number filter. Set this property to filter the report by the

merchant number specified. Setting this property will generate a report

consisting of only those transactions processed via the merchant number

specified. To generate a report that includes all merchant numbers in

PCCharge, set this property to "ALL― or leave blank. Example:
"99999999911"

ACCT_NUM String

User name filter. If a valid user name is set in the ACCT_NUM property, the
report will be filtered by that user name. The report returned will consist of

only those transactions processed by the user name specified. Example:

"User1". If this property is left blank, the report will show transactions

processed by all users.

MANUAL_FLAG String

Result filter. Use this filter to create a report consisting of only those

transactions with the result specified.

Valid Values: 0 = all (default), 1 = approved, 2 = declined Example: 1

TRACK_DATA String

Destination Directory for Report File. Specifies the destination directory

where the report file will be generated by PCCharge (if

PERIODIC_PAYMENT_FLAG is set to "1"). Example: ―C:\My

Documents\PCCReports\‖
Path Formats: UNC, MS-DOS(8 Characters) and Long. Max Length: 40

characters (if the Destination Directory is longer than 40 characters, use

CUSTOMER_CODE for the additional characters. Must end with a "\" unless

the directory name will be continued in the CUSTOMER_CODE property.

Note: If running in a Client/Server environment, this property is the path

from the server running PCCharge, not the client. For example, if a client

submitted a report request that specified ―C:\― as the destination directory,

the report would be written to the local hard drive of the server running
PCCharge, not to the client‘s hard drive.

CUSTOMER_CODE String

Destination Directory for Report File (continued). Continuation of the

destination directory (if the directory name is greater than 40 characters).

Max Length: 25 characters. Must end with a "\"

PERIODIC_PAYMENT_FLAG String

Report Output setting. Determines if the report will be printed by PCCharge

or written to a file. Valid Values: "0" = print to default printer specified in

PCCharge (default). "1" = print to file using filename specified in TRANS_ID

and path specified in TRACK_DATA.

STREET String

Starting Date/Time Filter (Optional) Specifies the start date and start time

of the report. Format: Date: MM/DD/YY Time: HH:MM:SS PM. Use to create

a report consisting of only those transactions processed on or after the date

specified. If a start date is not specified, today's date is assumed. If a start
time is not specified, 12:00:00 AM is assumed. The start date can be passed

without the start time. However, the start time cannot be passed without

the start date.

Examples: "03/04/05 09:00:00 AM" or ―03/04/05‖

PCCharge Version 5.9.0
Updated 2/8/2010

 514

Tag Data Type Description - Report Input File (.inx)

CARDHOLDER String

Ending Date/Time filter. Specifies the end date and end time of the report.

Format: Date: MM/DD/YY Time: HH:MM:SS PM. When used in conjunction

with Street; will create a report consisting of only those transactions

processed between the start and end date/time specified (inclusive). If an
end date is not specified, today's date is assumed. If an end time is not

specified, 11:59:59 PM is assumed. The end date can be passed without the

end time. However, the end time cannot be passed without the end date.

Examples: "07/06/05 06:00:00 PM" or ―07/06/05‖

TRANS_ID String

Report File name/Report File Type. Specifies the filename and extension of

the report file generated by PCCharge (if PERIODIC_PAYMENT_FLAG is set

to "1"). Also determines what file type will be used when PCCharge
generates the report. To specify the file type, set the extension to one of

the following:

.pdf – Create the report file in the Portable Document Format. Ex.
Report.pdf

.rtf – Create the report file in Rich Text. Ex. Report.rtf

.txt – Create a report file in flat text. Ex. Report.txt Default: .txt (If an

extension other than the ones listed is passed, the report will be returned as

flat text and a .txt extension will be added to the filename)

 These properties are required to submit a report request.

Report Output File (.oux)

Tag Data Type Description - Report Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file
format, max 8 characters.

RESULT String

Returns the result, which indicates the transaction‘s status upon completion.

Refer to the Transaction Result Constants section (see page 154) for a list of

valid values and descriptions.

PCCharge Version 5.9.0
Updated 2/8/2010

 515

Configuration File Layouts

This section describes the tags required to configure various settings. Currently, only configuration of

the Transaction Archive (pccw.mdb database backup) is supported.

Configuration Input File (.inx)

Tag Data Type Description - Configuration Input File (.inx)

COMMAND String

The action code that identifies what type of configuration command will be

performed. First byte is always a Z. Consult the section DevKit Constants

for a list of valid values (see page 141).

CFG_TYPE Long

Configuration type. Valid value:

 0 = CFG_TXN_ARCHIVE = Configure Transaction Archive. Use action

code ZC.

CFG_ENABLED String Enable or disable current configuration (1 = Enable, 0 = Disable).

CFG_PATH String
Specify path for saved output files (Example: backed up transaction

database). Must end with a backslash ―\‖.

CFG_SIZE_LIMIT String
Transaction archive size limit for GUI archive prompting and validation.

Specified in megabytes.

CFG_KEEP_DAYS String

Transaction archive preservation range. All transactions within the past

number of ―keep days‖ will remain in the pccw.mdb database following a
transaction archive command.

 These properties are required to submit a configuration command.

Configuration Output File (.oux)

Tag Data Type Description - Configuration Output File (.oux)

RESULT String

Result of configuration command. Responses:

 CONFIG SUCCESS = Configuration updated successfully.

 CONFIG FAILURE = Could not update configuration.

 INVALID TYPE = Unsupported configuration type.

PCCharge Version 5.9.0
Updated 2/8/2010

 516

Various Utility File Layouts

This section describes the tags required to perform various functions.

Transaction Archive Input File (.inx)

Tag Data Type Description - Transaction Archive Input File (.inx)

USER_ID String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section (see page

62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String Action code for system configuration command. Transaction Archive: ZA

MANUAL_FLAG String

This field is optional when performing a size limit check, but is required to

be set for a full archive. (1 = perform full database archive, 0 = check
database size limit).

 These properties are required to submit a transaction archive command.

Transaction Archive Output File (.oux)

Tag Data Type Description - Transaction Archive Output File (.oux)

USER_ID String

Returns the User name that is associated with the transaction. This value is

echoed back from the original transaction. The User name will be in DOS file
format, max 8 characters.

RESULT String

Result of the command. Responses:

If MANUAL set to 1 for full archive:

 ARCHIVE SUCCESS = transactions successfully archived to

pccwhist.mdb.

 ARCHIVE FAILURE = transactions not archived due to: feature not
enabled, database under the configured size limit, or an unexpected

database error occurred.

If MANUAL set to 0 for size limit check :

 EXCEEDS LIMIT = Transaction database exceeds the configured archive
limit.

 UNDER LIMIT = Transaction database is under the configured archive
limit.

CURRENT_SIZE String Current transaction database size in bytes.

CONFIG_SIZE String Current configured size limit for transaction archive in bytes.

INTRN_SEQ_NUM String Unique internal sequence number present for all transactions.

Transaction Inquiry Input File (.inx)

Refer to the section Transaction Inquiry (see page 127) for more information on the Transaction
Inquiry request.

Tag Data Type Description - Transaction Inquiry Input File (.inx)

USER_ID String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section (see page
62). Note: The value passed in USER_ID must match the name of the .inx

file. For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND String Action code for Transaction Inquiry: ZI

TROUTD String Either the TROUTD tag OR the ACCT_NUM tag must be supplied.

PCCharge Version 5.9.0
Updated 2/8/2010

 517

Tag Data Type Description - Transaction Inquiry Input File (.inx)

ACCT_NUM String Either the TROUTD tag OR the ACCT_NUM tag must be supplied.

 These properties are required to submit a transaction inquiry command.

Transaction Inquiry Output File (.oux)

Tag Data Type Description - Transaction Inquiry Output File (.oux)

RECORD_COUNT String The number of records matching the inquiry

TRANS_RECORD String
Contains nested XML tags providing information on transaction(s) pulled from

Trans table in the PCCharge database (pccw.mdb).

PCCharge Version 5.9.0
Updated 2/8/2010

 518

Cashier Configuration File Layout

This section describes the tags required to perform various Cashier Configuration functions.

 NOTE: See Cashier Permissions on page 75 for an example.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Add Cashier Configuration Input File (.inx)

Tag Data Type Description – Add Cashier Configuration Input File (.inx)

USER_ID * String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more
information on user names, consult the Multi-User Support section of the

manual.

Note: The value passed in USER_ID must match the name of the .inx file.

For example: <USER_ID>User2</USER_ID> and User2.inx.

COMMAND * String Action Code for cashier configuration command. Add Cashier: ZU
CASHIER_NAME * String Submit Cashier‘s login name.

PASSWORD String Submit Cashier‘s password.

NEW_CASHIER_PASSWORD String

Submit a new password for the Target Cashier.

Note: case-sensitive

Must be complex:

 minimum 7 characters

 must have at least one upper case character

 one numeric character

one special character (e.g., @, $, %, etc.)

NEW_CASHIER_CONFIRM_PASSWORD String
Resubmit the password for verification. Note: Must match the original

NewCashierPassword

ADD_CASHIER_1 String Allows the integrator to submit new cashiers up to 5 at a time. Requires 3

Name Value pairs to be entered for each AddCashier tag submitted.
CASHIER_NAME <Name>

PASSWORD <Password>

PERMISSIONS <Permissions>

Example:

<ADD_CASHIER_1>CASHIER_NAME CreditR PASSWORD CreditR123%

PERMISSIONS 10000|000|000|000|000000000000|0000|000000|00

</ADD_CASHIER_1>

See Chapter 4 Section Cashier Permissions For further examples.

ADD_CASHIER_2 String

ADD_CASHIER_3 String

ADD_CASHIER_4 String

ADD_CASHIER_5 String

TARGET_CASHIER_NAME String
Submitted when performing a function to edit a cashier‘s settings. This

specifies which cashier‘s information to alter.

* These properties are required to submit a configuration command.

PCCharge Version 5.9.0
Updated 2/8/2010

 519

Add Cashier Configuration Output File (.oux)

Tag Data Type Description – Add Cashier Configuration Output File (.oux)

USER_ID String

Sets the PCCharge user name associated with the transaction. The user name

must be in DOS file format, no spaces. Max Length: 8 characters. For more

information on user names, consult the Multi-User Support section of the

manual.

Note: The value passed in USER_ID must match the name of the .inx file.

For example: <USER_ID>User2</USER_ID> and User2.inx.

RESULT String

Responses:

PROCESSED: All 5 cashiers have been added.

CAPTURED: All cashiers with correctly formatted data have been added if

less than 5.

NOT CAPTURED: At least one to four of the cashiers was not added.

AUTH_CODE String
Success if RESULT = PROCESSED

5 digit code otherwise

INTRN_SEQ_NUM String

PCCharge Version 5.9.0
Updated 2/8/2010

 520

TCP Interface

Integration via the TCP Interface is very similar to File Method integration. Refer to the section File
Layout Specifications (see page 480) for information on creating and reading transaction data. When
using the TCP Interface, this data is sent and received via sockets.

To process a transaction using the TCP Interface:

1. Create a string that contains the transaction request. Refer to the section File Layout
Specifications (see page 480) for information on creating the transaction request string.

2. Open a socket connection to PCCharge.

3. Send the request string.

4. Once PCCharge processes the transaction, a stream of data will be returned with the results

5. Parse this data to retrieve the results of the transaction. Refer to the section File Layout

Specifications (see page 480) for information on the response data.

The only difference between building the message for the TCP interface and the File Method is that the

<XML_FILE> tag can omitted from the request when submitting transactions via the TCP Interface,

and the response will not include the <XML_FILE> tags.

Note: Before attempting to send TCP transaction requests to PCCharge, the PCCharge TCP Interface
must be activated. Merchants must check the ―Use TCP/IP Connection‖ option in the Setup |
Configure System | Advanced menu of PCCharge Payment Server or Pro.

Note: Merchants should make sure the ―Enable TCP/IP Client Reversals‖ option is un-checked in the
Setup | Configure System | Advanced menu of PCCharge Pro or PCCharge Payment Server if using a
processor other than FDMS Atlanta. This option is disabled by default.

Note: The default port of 31419 should be changed to maximize security when processing transactions
in a live environment. The default port of 31419 may be changed if a device is already using that port
on the computer running PCCharge.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

PCCharge Version 5.9.0
Updated 2/8/2010

 521

PAYware SIM - SIM.DLL (ActiveX) Method

PAYware SIM

PAYware SIM is a comprehensive ActiveX control used to enable electronic payment processing and
device control and third party applications. The SIM.dll is designed to allow developers to control the
functions of VeriFone pin pads as well as process Credit, Debit, Check, EBT and Settlement transactions
to VeriFone‘s four payment engine services: PAYware PC, PCCharge, PAYware Transact, and IPCharge.

PAYware SIM is similar to the Device.ocx and the PSCharge.dll included in the PCCharge DevKit. The
PAYware SIM combines the functionality of both controls, while also giving access to VeriFone‘s other
payment engines.

For more information on the SIM.DLL, please refer to the PAYware SIM Development Guide addendum
included with the PCCharge DevKit.

PCCharge Version 5.9.0
Updated 2/8/2010

 522

CHAPTER 7 -- Code Sample Information

PCCharge Version 5.9.0
Updated 2/8/2010

 523

Code Samples

The various sections in this chapter describe several of the code samples that are included in the
PCCharge DevKit. In many cases, the code samples themselves contain comments, therefore no
information will be provided about those code samples in this chapter. Please refer to the comments
in the code samples or contact the PCCharge Developer Support department for more information.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Java Client

The File Method Java Client demonstrates the File Method integration using Java.

Note: This program is supplied for demonstration purposes only.

Purpose

This program demonstrates the use of the PCCharge File Method interface using a Java client
application. It employs classes that encode/decode fields into/from INX and OUX records.

Site/User Specific Code Modifications

The values assigned to the following variables in the PCCGUI class code must be customized to what is

appropriate to a specific user and site as follows:

String Processor = "VISA"; // Processing company

String TID = "999999999911"; // Merchant ID

String User = "User1"; // ignored for unlimited user license, otherwise must be licensed user

String Path = "C:\\Program Files\\active-charge\\"; // path to PCCharge directory (use

two "\"s: "\" is a reserved character in Java)

Compilation

 Use the following command to compile the code with JavaSoft JDK1.0.2 and JDK1.1.X: javac
Pccfile.java

 The code also compiles and executes under Microsoft J++.

Compilation produces seven class files, which must be found in the same directory when the main class
is executed.

PCCharge Version 5.9.0
Updated 2/8/2010

 524

Initiating Execution

As an application, with the Java Virtual Machine:

 java Pccfile

Operation

1. Execution produces a form with six entry fields.

2. Only Card Number, Expiration Date, and Amount fields are mandatory for a valid transaction.

3. Initiate processing by clicking on the Send button.

4. A file named User1.inx will be written to the directory specified in Path.

5. The program will block input until it reads the transaction result from the file User1.oux.

A message box will report the result of the transaction.

PCCharge Version 5.9.0
Updated 2/8/2010

 525

Web-based Integration Samples

The PCCharge DevKit includes several samples designed to demonstrate the coding required to create a
Web-based integration to PCCharge. The samples included in the DevKit do not actually perform credit
card processing. They are purely an interface or "front-end" to the PCCharge processing engine.

The intended audience for this chapter includes webmasters and TCP/IP application developers. It
assumes basic knowledge of Web, Internet, and TCP/IP terminology, as well as familiarity with the
specific web server (if any) to be used.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

System Requirements

PCCharge Virtual Terminal Sample

 Windows NT Server 4.0 or higher with Service Pack 5 installed

 Internet Information Server (IIS) v3.0 or higher, running the Web Server Service Active Server
Pages (ASP)

 For Internet-based use, host must provide a Secure Socket Layer (SSL) to ensure secure
transactions.

 Accessing and using a PCCharge Virtual Terminal site requires either Internet Explorer v6.0 or
higher or Netscape v6.0 or higher.

 PCCharge with Unlimited Users activated

 Read/write access to the PCCharge program directory

ASP Sample

 Windows NT Server v4.0 or higher

 Microsoft Internet Information Server v4.0 or higher

 PCCharge with Unlimited Users activated

 Read/write access to the PCCharge program directory

Cold Fusion Sample

 Windows NT Server v4.0, or higher

 Cold Fusion v4.0 or higher

 Web Server cable of executing Cold Fusion Tags (Microsoft Internet Information Server, v4.0 or
higher recommended)

 PCCharge with Unlimited Users activated.

 Read/write access to the PCCharge program directory

Java Applet Sample

 Java-enabled Web Server

 Java v1.0.2 or higher or Microsoft J++

 Any operating system supporting Java, including the Java socket functions

 PCCharge with Unlimited Users activated

 TCP/IP connectivity to PCCharge

PCCharge Version 5.9.0
Updated 2/8/2010

 526

PCCharge Virtual Terminal Sample

The PCCharge Virtual Terminal is a code sample based on Active Server Page (ASP) technology that
demonstrates how merchants can view, charge, and settle credit card transactions using a browser.
Typically, applications such as the PCCharge Virtual Terminal would be used in the following scenarios:

1. For ISPs that host PCCharge and set up eCommerce sites for multiple merchants. The ISP
would provide a ―Virtual Terminal‖ interface for their merchants to provide a way to view
reports, process voids and post-Authorizations, and settle batches.

2. For Windows-based Intranets. The Virtual terminal can be used as a ―Virtual point-of-sale‖,
meaning merchants would simply use their browsers to process transactions across the
network, eliminating the need to install extra software on each client machine.

Installation

When installing the DevKit, the PCCharge Virtual Terminal will be installed into the directory

C:\Program Files\Active-Charge SDK\Virtual Terminal.

Choose a folder that will made into a virtual directory in IIS, or create a new sub-folder under an
existing website directory. Copy the files and folders from the PCCharge Virtual Terminal folder into
this virtual directory. If the Virtual Terminal's files and folders are copied to a machine on which the

DevKit has not been installed, the file PSCharge.dll should also be copied from the directory

\WINNT\System of the first machine to the directory \WINNT\System of the new machine.

PSCharge.dll must also be registered for the PCCharge Virtual Terminal to work properly (use the

command regsvr32 PSCharge.dll to register this file).

Note: If problems occur while running PCCharge on a separate machine than the Web Server (on the
same network), have the Network Administrator set up a Global User as follows:

1. Add a Global User on a trusted domain server.
2. Set the IUSR (found in the IIS Default Web Site) to this Global User.
3. Give the Global User full permissions to the PCCharge directory.

In the Internet Information Services (IIS) Manager click on the Web Service Extensions folder. Here
you will see that Active Server Pages are Prohibited (this is the default configuration of IIS 6)
Highlight Active Server Pages and click the Allow button ASP is now active.

Once installed, it is important not to change the directory structure of the PCCharge Virtual Terminal
server files. Several sub-folders are created in the folder, and the files in these folders are referenced
in the installed ASP/HTML files. A listing of all ASP/HTML files installed, and a brief description of the
purpose of these files, is included in the following ASP/HTML Files Table:

ASP/HTML Files Table
File Description – ASP/HTML Files Table

81.asp ASP code to display the Credit Card Detail report

82.asp ASP code to display the Batch Pre-Settle report

83.asp ASP code to display the Batch Post-Settle report

global.asa
Sets session variables to create connection to charge-processing-engine database

and path information on start up.

PCCharge Version 5.9.0
Updated 2/8/2010

 527

File Description – ASP/HTML Files Table

PCCWBatch.asp Displays options (buttons) for doing batch Inquiry and Settlement

PCCWBatch_post.asp Displays results of batch Inquiry or Settlement

PCCWBusy.asp
Initializes variables and displays busy message to user during processing of

transaction

PCCWDefault.htm Sets up frames for the PCCharge Virtual Terminal

PCCWDisplayRpt.asp Displays Report

PCCWInquire.asp
Submits requests and receives responses when user clicks Inquire to do batch

Inquiry

PCCWInquireBusy.asp Displays busy messages when user is performing batch Inquiry

PCCWMenu.asp Provides a menu for choosing transactions, settlement, reports, and help options

PCCWMerch.asp
Screen to allow merchant to enter and save merchant number and processing
company abbreviation

PCCWMerch_post.asp

Checks validity of entered merchant numbers and processing companies and

informs user appropriately. Consult the section Virtual Terminal Security (see

page 528).

PCCWOfflinePurge.asp Deletes all offline transactions by deleting the offline transaction file.

PCCWOfflinePurge_post.asp
Displays a "wait" message with a spinning credit card icon during an Offline Batch
Purge.

PCCWOfflineRpt.asp

Displays merchant's Offline Transaction Report if merchant has any offline

transactions. Offline transactions are transactions that have been submitted to the

payment-processing engine, but have not yet been authorized. These transactions
are stored until the merchant decides to actually authorize them.

PCCWOfflineRptPurge_post.asp Displays the results of an Offline Batch Purge.

PCCWOfflineRptUpdate.asp
Updates offline transaction file stored by payment-processing engine when

merchant chooses to change status of any transaction in offline file.

PCCWPost.asp Displays table for allowing user to enter Post Authorization transaction.

PCCWPreReport.asp Displays different Report types and options from which user can choose.

PCCWReports.asp
Validates user selections on Report types and options screen, and sets errors or
calls other reports pages as necessary.

PCCWRunOffline.asp

Submits stored offline transaction file for authorization. Each transaction in file not

marked to be dropped is processed (authorized) by payment-processing engine.

Those marked to be dropped, if any, are skipped.

PCCWRunOffline_post.asp Displays results of processing offline transaction file.

PCCWRunOfflineBusy.asp
Displays busy message to user (merchant) during processing of offline transaction

file.

PCCWRunTrans.asp ASP code to process transactions.

PCCWSale.asp Displays table for allowing user to enter Sale or Pre-Authorization transaction.

PCCWSettle.asp
Submits batch settlement and checks response when user performs batch

settlement.

PCCWSettleBusy.asp Displays busy messages to user when processing batch Settlement.

PCCWTitle.asp Displays the VeriFone, Inc. logo and the PCCharge Virtual Terminal title.

PCCWTrans.asp
Determines what transaction type user has selected from menu and redirects user

to correct page for running that transaction.

PCCWTrans_Err.asp
Shows user any error that may have occurred while processing credit card

transaction. Displayed in place of PCCWTrans_post.asp if error occurred.

PCCWTrans_post.asp Shows user results of credit card transaction

PCCWVoid.asp Displays table allowing user to enter Void transaction type

In addition to the ASP/HTML files installed, there are several sub-directories installed as well:

PCCharge Version 5.9.0
Updated 2/8/2010

 528

Virtual Terminal Sub-Directories

Sub-Directory Description – Virtual Terminal Sub-Directories

help Contains the online Help HTML files used in PCCharge Virtual Terminal

images Contains all images used in PCCharge Virtual Terminal

js
Contains JavaScript helper functions that make users confirm their actions when

purging off-line transaction files

css Contains cascading style sheets used in PCCharge Virtual Terminal

Virtual Terminal Installation

The system's "Internet User" must be given full access to the directory C:\Program Files\active-

charge OR C:\Program Files\pccw for the PCCharge Virtual Terminal to work properly. To find

out which user is designated as the system's "Internet User":

1. Open the Internet Service Manager

2. Right click on "Default Web Site"

3. Choose Properties

4. Click on Directory Security

5. Click the Edit button next to Anonymous Access and Authentication control

6. Click the Edit button next to Allow Anonymous Access.

The user name that appears next to Username (ex. IUSR_COMPUTER) is the "Internet User". Simply add

this Username to the PCCharge folder's permissions list and assign the user "Full Control" permissions.

Once the server files have been installed, start the Internet Service Manager and make the directory
where the files are installed a virtual directory, if it is not already.

Virtual Terminal Security

Caution: Please read this section carefully.

PCCharge Virtual Terminal requires Secure Socket Layer (SSL) encryption to be in place on the site
before PCCharge Virtual Terminal can be hosted securely for merchants. Once an SSL certificate has
been acquired for the site, verify that PCCharge Virtual Terminal is setup to use this security. To verify
the security setup, follow the procedure below:

1. Open the ASP file named PCCWMerch_post.asp.

2. Find the line in this file that reads Response.Cookies("MrChant").Secure = FALSE.

3. Change the word FALSE to TRUE.

4. Save this file, and close it.

PCCharge Version 5.9.0
Updated 2/8/2010

 529

This ensures that a merchant's merchant account information is encrypted when stored on the machine
from which the merchant is browsing.

FOR TESTING PURPOSES ONLY: With test merchant accounts on non-SSL sites, set the above line =

FALSE until ready to go live with a PCCharge Virtual Terminal site. Setting the line = TRUE without
using SSL will cause PCCharge Virtual Terminal to not save merchant account information properly.

Setting up Merchant Information

Click Setup from the menu frame to display the Merchant Setup Information screen. The information
on this screen must be entered correctly before using PCCharge Virtual Terminal. Once this information
is entered correctly, it will be stored in a cookie. Cookies must be enabled in the local Web browser for
the PCCharge Virtual Terminal to work correctly.

There are two required fields on this screen: Processing Company and Merchant Number. These
values should be set to a valid Processing Company and Merchant Number that is set up in PCCharge.
See the DevKit Constants section for a list a valid processor codes (see page 141).

Using Virtual Terminal

Use a web browser to open the file: PCCWDefault.htm

Note: In order to use the Virtual Terminal, the Unlimited User License MUST be activated in PCCharge.
See the section Multi-User Support (see page 62) for more information.

Processing Transactions

To process a transaction, follow the procedure below:

1. Select the type of transaction to be performed from the drop-down list under Transactions in the

Menu frame.

2. Click the Submit button. This will display one of several transaction screens, depending on the

type of transaction selected.

3. Enter data for the available fields and click the Process button.

4. ONLY CLICK THIS BUTTON ONCE per transaction and DO NOT click the Stop button on the browser

after clicking Process. The transaction will be processed even if the Stop button is clicked.

A busy animation will appear while processing is underway and the results of the transaction will
appear when processing is complete.

PCCharge Virtual Terminal can also process "offline" transactions. When the offline transaction

processing is turned on, a .bch file is created that holds all transaction information entered into

Virtual Terminal.

To process an offline transaction, follow the procedure below:

1. Click Setup in the Menu frame.

2. Check the box next to Perform Offline Transactions. Click Update.

3. Process transactions as shown in the steps above.

PCCharge Version 5.9.0
Updated 2/8/2010

 530

Settling Batches

Selecting Settlement from the menu frame will display two settlement options: Inquire and Settle.

If the merchant‘s processor is Terminal based or set up for manual open/close, batch settlement must
be performed every day that transactions have been processed to ensure that funds are deposited into
the merchant‘s bank account. The two options on this screen allow merchants to view and settle their
daily batches.

Once one of these options have been selected, do not click the Stop button.

To settle offline transactions, click the Settlement button in the Menu frame. Click Process Offline

Transactions. To remove the transactions saved in the .bch file, click the Purge Offline Batch button.

Inquire

Use this to retrieve the current status of the pending batch (unsettled transactions). Clicking this
option will return the number of items in the current batch, the current batch number, and the
total dollar amount of the transactions in the batch. This option is only for viewing the batch status
and does not change the status of the batch. It does not settle or close the batch.

Settle

This option settles or closes all of the transactions in the pending batch.

Reports

Because of updated encryption and changes in the database structure, reports are no longer available
through the Virtual Terminal starting with PCCharge version 5.7.

PCCharge Version 5.9.0
Updated 2/8/2010

 531

ASP Sample

The ASP Sample uses Active Server Pages to communicate transaction and settlement information from

a web page to PCCharge via the PSCharge.dll. This sample creates an instance of the PSCharge

charge or batch class, sets a few properties, calls the send method, and then waits for the response
from PCCharge. This solution is ideal for Windows-based servers running Internet Information Server.

If the Web Tools were installed during the installation of the DevKit, the ASP sample will be installed in

the directory C:\Program Files\active-charge SDK\Web Tools\Asp. Refer to the code and
comments in the files in this directory when beginning the integration.

Note: The ASP sample should not be used as-is on a public merchant website because, among other
things, it allows the users to specify the transaction amount. The HTML forms of the sample may be
modified for this type of website or could be used as the basis of an Intranet-based credit card
processing application.

The HTML samples can be installed anywhere in the web server document path. If they are to be used
securely, they must be installed in a secure path area as previously configured in the web server
software.

PCCharge can run on the same computer as the ASP sample, or they can be separated in various ways.
The required connections for the ASP Sample are as follows:

 The ASP pages must be installed into an IIS virtual directory so that they can be properly
executed by IIS. Normally this means that they will be installed on the same computer with the
web server, although this is not a strict requirement.

 The provided ASP sample communicates transaction requests to PCCharge via the

PSCharge.dll. Thus, both the ASP pages and PCCharge may be running on the same

computer or they may reside on different computers. If using separate computers, the servers
must be in the same domain (or in domains that trust one another), the PCCharge directory
must be shared, and proper permissions for the web server's Internet User must be assigned to
the PCCharge directory. This means that the Internet User that invokes a transaction request

on COMPUTER1 (IUSR_COMPUTER1, for example) must have read/write access to the PCCharge

directory on COMPUTER2 (Example: \\COMPUTER2\active-charge). Also, PSCharge.dll

must reside and be registered properly on the machine that hosts the ASP pages (COMPUTER1

in this case).

Creating an Object

The user settable properties and methods for each of to DLL's classes are listed in the DLL (Active X)

Method section of the API (See page 262) or in PSCharge.html. PSCharge.html is located in the

DevKit in the C:\Program Files\active-charge SDK\Web Tools\Asp directory. Before any
properties or methods can accessed, an instance of a DLL class must be made. This is done from Active
Server Pages with code similar to the following:

Set GO = Server.CreateObject("PSCharge.Charge")

PCCharge Version 5.9.0
Updated 2/8/2010

 532

Cold Fusion

The Cold Fusion Sample uses tags to communicate transaction and settlement information from a web

page to PCCharge via the PSCharge.dll. This sample creates an instance of the PSCharge charge

or batch class, sets a few properties, calls the send method, and then waits for the response from
PCCharge. This solution is ideal for Windows-based servers running a Cold Fusion compatible web
server.

If the Web Tools were installed during the installation of the DevKit, the Cold Fusion sample will be

installed in the directory C:\Program Files\active-charge SDK\Web Tools\Cold Fusion.

Refer to the code and comments in the files in this directory when beginning the integration.

Note: The Cold Fusion sample should not be used as-is on a public merchant website because, among
other things, it allows the users to specify the transaction amount. The HTML forms of the sample may
be modified for this type of website or could be used as the basis of an Intranet-based credit card
processing application.

The HTML samples can be installed anywhere in the web server document path. If they are to be used
securely, they must be installed in a secure path area as previously configured in the web server
software.

The required connections for the Cold Fusion Sample are as follows:

 The Cold Fusion tags must be installed so that they can be executed as Cold Fusion script by
the web server. Normally this means that they will be installed on the same computer with the
web server, although this is not a strict requirement.

 The provided Cold Fusion sample communicates transaction requests to PCCharge via the

PSCharge.dll. Both the Cold Fusion sample and PCCharge must be running on the same

computer. Also, PSCharge.dll must reside and be registered properly on the machine that

hosts the Cold Fusion pages (COMPUTER1 in this case).

Creating an Object

The user settable properties and methods for each of to DLL's classes are listed in the DLL (Active X)

Method section of the API (See page 262) or in PSCharge.html. PSCharge.html is located in the

DevKit in the C:\Program Files\active-charge SDK\Web Tools\Asp directory. Before any

properties or methods can accessed, an instance of a DLL class must be made. This is done from Cold
Fusion tags with code similar to the following:

<CFOBJECT ACTION="Create" NAME="Charge1" CLASS="PSCharge.Charge">

PCCharge Version 5.9.0
Updated 2/8/2010

 533

Java

Java Applet -- This client-server based sample uses several Java classes to communicate transaction
information from a Java Applet to one of our payment-processing engines via sockets. This solution is
also ideal for multi-platform sites, or non-Windows-based servers.

Required Connections

PCCharge can be installed and run on the same computer as any of the samples, or they can be
separated in various ways. The required connections for each configuration are as follows:

Java Applet

 The Java Applet, the web server, and PCCharge must all reside on the same server.

 The Java Applet communicates with PCCharge via TCP/IP using sockets. By default, the Java
Applet communicates with PCCharge via port 31419. The default port of 31419 should be changed
to maximize security when processing transactions in a live environment.

TCP Interface Web Samples

The Java Applet sample communicates transaction information to PCCharge via sockets. Before
attempting to use these samples, you should make sure that the PCCharge TCP Interface has been
activated and that the proper user configuration has been set in PCCharge. Please refer to the TCP
Interface chapter before proceeding (see page 518).

Java Applet

The folder containing the Java Applet sample contains two main files: sample.html and

PCCClient.java. Before attempting to use the Java Applet, you should edit the PCCClient.java
file and modify the IP Address, Port, Merchant Number, and Processor code values, if necessary. Once

these values match the PCCharge configuration, you must then compile PCCClient.java using a Java

compiler. The command to compile with JavaSoft is javac PCCClient.java. Alternatively,

PCCClient.java may be compiled with Microsoft J++.

Once compiled, seven .class files will be created. Below are the classes and their descriptions.

 HDR.class -- Format of the header data sent to PCCharge

 INX.class -- Format of transaction data sent to PCCharge

 OUX.class -- Format of transaction results returned from PCCharge

 PCCClient.class -- The main class

 PCCGUI.class -- Creates the data entry form and handles command events

 Records.class -- Super class for HDR, INP, & OUT records

 ReportDialog.class -- Reports transaction results

PCCharge Version 5.9.0
Updated 2/8/2010

 534

To run the Java Applet, simply load the sample.html form into a Java-capable web browser. The

Java Applet will appear.

For more information on the Java Applet, see the README.txt file that resides in the directory

C:\Program Files\Web Tools\Java.

PCCharge Version 5.9.0
Updated 2/8/2010

 535

General Troubleshooting

Invalid merchant account?

If the response page indicates an invalid merchant account, you are probably sending the wrong
merchant number or processor code to PCCharge.

Trouble with multiple transactions?

If your application operates properly with single transactions, but has difficulty with multiple
transactions, you may not have the unlimited user version of PCCharge installed. Otherwise, there is a
high likelihood that your application is not handling the socket connections or data flow properly. The
PCCharge TCP Interface has been tested successfully with high serial and concurrent transaction
volume.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

Permissions

The most common problem integrators experience while attempting to implement an ASP or Cold
Fusion integration involves NT permissions. For a web site visitor to successfully submit an ASP or Cold

Fusion transaction request via the PSCharge.dll, that visitor must have full access to the directory

C:\Program Files\active-charge or c:\Program Files\PCCW. To set full access permissions

for the visitor, follow these steps:

In Microsoft IIS, go to the Internet Service Manager

Right click on "Default Web Site"

Choose Properties

Click on Directory Security

Click the Edit button next to Anonymous Access and Authentication control

Click the Edit button next to Allow Anonymous Access.

Note the user name that appears next to Username (ex. IUSR_COMPUTER). This is your "Internet
User". Simply add this user to the permissions list of the PCCharge directory and assign the user "Full
Control" permissions.

If you experience problems using your Web Server and PCCharge on separate machines on the same
network, you should have your Network Administrator set up a Global User as follows:

1. Add a Global User on a trusted domain server.

2. Set the IUSR (found in the IIS Default Web Site) to this Global User.

3. Give the Global User full permissions to the PCCharge directory.

PCCharge Version 5.9.0
Updated 2/8/2010

 536

Appendix

PCCharge Version 5.9.0
Updated 2/8/2010

 537

Test Credit Cards and Merchant Accounts

The PCCharge DevKit includes test merchant accounts and test credit card numbers that can be used
while developing and testing integrated applications. Currently, VeriFone, Inc. includes only test
merchant accounts for credit card and check processing companies. Debit, EBT, and Gift test
merchant accounts can be acquired by contacting the various processing companies directly. Contact
information for several processors can be found within this section.

Test Credit Card Numbers

Several credit card numbers are provided for testing purposes. The expiration date for each test card
should be 12xx, where ‗xx‘ is the last two digits of the current year or later. Most processors require
that the amount of $1.00 be used for test transactions. Some processors will decline amounts greater
than $1.00. Integrators should experiment with different amounts during integration and testing. Also
included is generic Address Verification Data and Card Verification Values. The processor may return a
positive result if these values are used.

Credit Cards

371449635398431 (American Express)

4012000033330026 (Visa)

4387755555555550 (Visa)

4055011111111111 (Visa Commercial Card)

5424180279791765 (MasterCard)

5439750001500206 (MasterCard)

6011000998980019 (Discover)

5014861541104200412 Driver ID: 0041 (Fleet One)

70768599874125027 Driver PIN: 11411 (Fuelman)

7088869008250004273 (Voyager)

Address Verification Data

Most processors that support AVS will accept the following information as valid:

 Zip Code: 85284

 Street: 8320 Main Street

Card Verification Values

Most processors that support CVV2, CVC2, and CID, will accept the following information as valid:

 VISA: 999

 MasterCard: 998

 Discover: 996

 AMEX: 9997

PCCharge Version 5.9.0
Updated 2/8/2010

 538

Test Track Data

This section includes track I and II data for four different credit cards. Integrators that have access to
a magnetic stripe encoding device may use this information to create their own test credit cards.

Test Card 1 (Generic MasterCard):

%B5424180279791765^VERIFONE TEST 1^08121011000 1111A123456789012?

;5424180279791765=08121011000001234567?

Test Card 2 (Generic MasterCard):

%B5439750001500206^VERIFONE TEST 2^08121011000 1111A123456789012?

;5439750001500206=08121011000001234567?

Test Card 3 (Generic Visa):

%B4012000033330026^VERIFONE TEST 3^08121011000 1111A123456789012?

;4012000033330026=08121011000001234567?

Test Card 4 (First Data Omaha Test Card):

%B0227271714569^FDMS OMAHA TEST CARD^081210054321000000000000000150A?

;0227271714569=08121011000012345678?

PCCharge Version 5.9.0
Updated 2/8/2010

 539

Test Merchant Account Information

Information about each test merchant account can be found below. The setup files for the test

merchant accounts are included in the DevKit in the \active-charge SDK\Test Merchant Info\

directory. Values such as URLs and phone numbers are different for some processors when using the
test accounts. These values have been set up properly in the test merchant account files already. This
section should be used as a reference for the test merchant accounts and to acquire contact
information for processors that do not provide test accounts in the DevKit.

Note: Some test merchant accounts allow for or even require a real credit card number to be used
while testing. If using a real credit card, no charges will be placed against a real card number, but the
limit-to-buy will be reduced by the amount of the transaction. Therefore, use small amounts less than
$10 when testing.

Note: Some test merchant accounts use Datawire to process transactions via a tcp/ip connection (over
the internet). VeriFone is unable to provide the necessary Datawire ID (DID) for a test account.
Integrators will be required to setup a test account directly with First Data and request a DID when the
test account is created.

WARNING: New password requirements in PCCharge version 5.8 are necessary to meet PA-DSS
compliance standards. This also requires that all passwords will expire after a maximum of 90 days.

FDMS North / Cardnet (CES)
Test Credit Card Company Number: 000000927996296767

Valid Credit Card Numbers:
5499840000000329

5424180279791765

5439750001500206

4012000033330026

To test address verification, use the following:

Zip code: 105232417

Street Address: 4 NOB HILL DRIVE

FDMS Omaha / FDR (FDC)
Test Credit Card Company Number: PZ95.022009001234566

Valid Credit Card Numbers:
0227271714569

FDMS South / NaBanco (NB)
Test Credit Card Company Number: 67888882701

Valid Credit Card Numbers:
5442981111111114

5424180279791765

The following phone number may be used for testing: (800) 884-8379

PCCharge Version 5.9.0
Updated 2/8/2010

 540

Global Payments-East (NDC)
Test Credit Card Company Number: 3112

Valid Credit Card Numbers:
4003010123456780

5424180279791765

5439750001500206

4012000033330026

Chase Paymentech (GSAR)
Test Credit Card Company Number: 700000000288111

Valid Credit Card Numbers:
5424180279791765

5439750001500206

4012000033330026

Note: The test merchant account information that is installed by the DevKit does not include the
password necessary to process transactions via Chase Paymentech‘s Netconnect (TCP/IP) interface. In
order to process transactions successfully using Netconnect, the following should be entered in the
Chase Paymentech Advanced Options screen in PCCharge:
Username: pccharge
Password: net4test
The primary authorization address: https://netconnectvar.paymentech.net/NetConnect/controller

Note: In order to test Canadian Debit with Chase Paymentech (GSAR), the integrator will need to
obtain a test merchant account from VeriFone Developer Support, and a VeriFone SC5000 PINpad from
Chase Paymentech (GSAR) that is configured properly for use with Canadian Debit. Application version
2.0H must be loaded onto the PINpad. MAC data is specific to the PINpad and merchant number. If
EBT transactions will be supported, a separate PINpad device is required. Please contact VeriFone
developer support at 1-877-659-8983 or devsupport@verifone.com for more details.

American Express (AMEX)
Integrators may contact the following individual to set up a test account:
Scott Arndt (800) 451-8413

TSYS (Formerly Vital) (VISA)
Test Credit Card Company Number: 999999999911

Test URL: ssl2.vitalps.net

Port: 5003

Valid Credit Card Numbers:
5424180279791765

5439750001500206

4012000033330026

https://netconnectvar.paymentech.net/NetConnect/controller
mailto:devsupport@verifone.com

PCCharge Version 5.9.0
Updated 2/8/2010

 541

FDMS Nashville / Envoy (FDCN)
Test Credit Card Company Number: 0000114910300001188697

Valid Credit Card Numbers:
5424180279791765

5439750001500206

4012000033330026

National Bankcard Systems (NBS)
Test Credit Card Company Number: GO1086123456401

Valid Credit Card Numbers:
5014861541104200412 Driver ID: 0041

70768599874125027 Driver PIN: 11411

6900460430001234566 Driver ID: 410483

7088869008250004273

NPC (NPC)
Test Credit Card Company Number: 999999999911

Valid Credit Card Numbers:
5424180279791765

5439750001500206

4012000033330026

ECHO (ECHO)
Test Credit Card Company Number: 1233016004

Valid Credit Card Numbers:
5439750001500206

Elavon (NOVA)
Test Credit Card Company Number: 99988836

Valid Credit Card Numbers:
5424180279791765

5439750001500206

4012000033330026

RBS WorldPay (LYNK)
RBS WorldPay has not provided VeriFone with contact information to allow integrators to request a test
account. Integrators will need to contact RBS WorldPay directly to obtain a test account.

PCCharge Version 5.9.0
Updated 2/8/2010

 542

Alliance Data Systems, Inc. (ADSI)
Test Credit Card Company Number: GOPCCHARGE01

Valid Credit Card Numbers:
5424180279791765

5439750001500206

4012000033330026

FDMS Atlanta (BPAS)
FDMS Atlanta has not provided VeriFone with a test account. Integrators will need to contact FDMS
Atlanta directly to obtain a test account.

Note: FDMS Atlanta requires a ―mini-cert‖ in order to allow merchants to use a POS / integration with
PCCharge and their network. For more information, speak with a FDMS Atlanta representative.

Fifth-Third Bank-St Pete (BPS)
Fifth-Third Bank-St Pete has not provided VeriFone with a test account. Integrators will need to
contact Fifth-Third Bank-St Pete directly to obtain a test account.

NOTE: Please do not use any of the included test credit card data for testing with Fifth-Third Bank-St
Pete. A relationship manager from Fifth-Third Bank-St Pete will provide this information once the test
account is created.

Heartland Payment Systems (HPTS)
Heartland Payment Systems has not provided VeriFone with a test account. Integrators will need to
contact Heartland directly to obtain a test account.

PCCharge Version 5.9.0
Updated 2/8/2010

 543

Check Services Test Information

TeleCheck International, Inc. (TECK)

Test System Phone Number: 1-800-366-8950

Site ID: 0005055522

CrossCheck (CRCK)

Test System Phone Number: 1-800-654-7346

Store#: 28324

Check: 123

State: ZZ

DL#: 123456

Amount: 1.00

Certegy (EFAX)

Test System Phone Number: 1-800-237-2626

SiteID: 1009663305

PCCharge Version 5.9.0
Updated 2/8/2010

 544

Integration Troubleshooting

The first step in troubleshooting an integration issue is to rule out the possibility that the issue might
be occurring in the PCCharge transaction engine. To determine if PCCharge is causing the problem,
run the transaction directly from the PCCharge GUI. If an error occurs or the transaction is
unsuccessful when processed directly from the PCCharge GUI, the issue is most likely a merchant setup
or communication issue. These types of problems must be resolved before any integration
troubleshooting can occur. If a merchant is using a licensed copy of PCCharge with a live merchant
account, they should contact VeriFone, Inc.‘s technical support department to resolve the issue. If an
integrator is using one of test merchant accounts that are included in the DevKit, the integrator should
contact VeriFone, Inc.‘s development support department to resolve the issue.

Once it has been determined that PCCharge is not returning the error or is cause of the problem,
several tools are provided that can be used to troubleshoot the integration issue. In general, most
integration issues are related to message formatting and are caused by missing or invalid properties or
the invalid formatting of values.

To narrow down which properties or values are causing the problem, a comparison should be made of
the transaction request that is being submitted by the integrated application and the transaction
request that is submitted by the PCCharge GUI.

To make this comparison, first activate IO Logging in PCCharge (see below), and then run the
transaction from the PCCharge GUI. After successfully running the transaction from the PCCharge GUI,
run the same transaction from the integrated application. The IO Log will capture the details from
both transactions, thus allowing the integrator to compare the transaction requests and determine
which properties or values are causing the problem.

IODebug.log

The IODebug.log is a text file created by the PCCharge that can be used to view the transaction

requests and responses that are processed by PCCharge. Logging to the IODebug.log file is disabled

by default. To activate IO Logging in PCCharge, go to setup, configure system, system log. Place a

checkmark under ―Create IODebug.Log File‖ or, from the PCCharge GUI, hold down the Shift key and

then hit the F11 key.

Once logging has been enabled, the text ―IOLog Enabled― will appear in the title bar of PCCharge.
While logging is enabled, every transaction request and response (whether submitted from the

PCCharge GUI or via integration) will be placed in the file IODebug.log. This file will be located in

the PCCharge directory. The following is an example of the type of information that will appear in the

IODebug.log file:

"==================================="

"PCCharge Pro for Windows v5.7.1"

"-----------------------------------"

"INX : 06/03/04 10:40:21 >> �C:\Program Files\PCCW\User1�<XML_FILE>

<XML_REQUEST><USER_ID>User1</USER_ID>...

"OUX : 06/03/04 10:40:22 >> �<XML_FILE><XML_REQUEST><USER_ID>User1 </USER_ID>

<RESULT>Error</RESULT>...

Note: In this example, text has been truncated and replaced with ―…‖.

PCCharge Version 5.9.0
Updated 2/8/2010

 545

The data following ―INX‖ represents the details of request message and the data following ―OUX‖
represents the details of the response message. The actual XML message used to process the

transaction starts with <XML_FILE> tag on the INX line.

Note: In order to view the contents of the IODebug.log in a more readable fashion, copy just the

XML message (<XML_FILE>[contents]</XML_FILE>) to a new text file. Use the extension of .xml

when saving the text file. Open this new file using Internet Explorer. Internet Explorer will
automatically show the XML message in a more readable format.

PCCharge “Internal Use” Tags

When viewing the contents of the IODebug.log, integrators will notice that there are several tags
that appear in the request message that are not documented in the DevKit manual. These tags are
added to each transaction request by PCCharge automatically and are reserved for ―Internal Use‖.

With the exception of ―TROUTD‖, integrators should ignore these tags when determining the cause of

integration issues.

The tags that are reserved for internal use include (but are not limited to) the following:

RESP_TYPE

INTRN_SEQ_NUM

INP_TYPE

ENHANCED_TRANS_FLAG

IMPORT_TRANS_FLAG

TXN_METHOD

IS_PURCHASE_CARD

TROUTD (This property should be passed by integrators when performing follow-on transactions, but is
automatically populated for transactions such a Sales, Credits, Pre-Authorizations, etc.)

Transaction Request Duplication

PCCharge has the ability to create a duplicate of each transaction request that is submitted to

PCCharge. Unlike the IODebug.log file, the contents of the files created by this feature are
encrypted. The contents of these files can only be viewed by VeriFone, Inc. support representatives.
These files may be requested by VeriFone, Inc. support representatives to assist in troubleshooting.

Transaction Request Duplication is disabled by default. To activate this feature, from the PCCharge

GUI, hold down the Shift key and then hit the F10 key. Once this feature has been enabled, the text
―TransDup Enabled― will appear in the title bar of PCCharge. While this feature is enabled, every
transaction request will be duplicated and placed in an individual file located in the PCCharge
directory. The filename will include the user name, the date and time of the transaction request, and

will have an extension of .dup.

Communication Log

Another tool that can be used for troubleshooting purposes is the PCCharge Communication log. This
log records the information that is passed from PCCharge to the processor. This feature is used to log
communication for both modem-based and Internet-based processors.

Communication logging is disabled by default. To activate communication logging, access the modem
settings screen from the Setup menu in PCCharge. (If the ―Simple Modem Setup‖ screen appears, click

PCCharge Version 5.9.0
Updated 2/8/2010

 546

the Use Manual Modem Setup button.) Click the Advanced button and then check the Create Log File
option. If the modem log will be sent to VeriFone, Inc. for assistance in troubleshooting a problem, the
Encrypt Log File option must be checked and a 16-digit password must be supplied in order to encrypt
the file. If the file will be used by the integrator or merchant to troubleshoot the issue locally, the
Encrypt Log File option must be unchecked so that the contents of the log file are readable.

Once the communication log has been activated, a file called Logfile.PCC will be created in the

PCCharge directory.

Error Log

PCCharge supports error logging. This feature is always enabled. Any time PCCharge encounters an
internal error, the date, time, transaction number, and a description of the error will be written into a

file named ErrLog.PCC. This file appears in the PCCharge directory. The information in this file can
be used to troubleshoot integration issues. The most common errors that would be logged would be
permission errors, database errors, and runtime errors.

Note: Occasionally, information will be written to this file that is intended for informational purposes
only. The existence of data in this file does not necessary indicate that an error has occurred while
PCCharge is processing transactions.

Troubleshooting a Live Installation

If designed properly, integrated applications should always check for the existence of the file SYS.PCC

in the PCCharge directory prior to submitting transactions. This check provides a method that can be
used when troubleshooting a live customer site.

When troubleshooting, it is often beneficial to see the exact contents of the .INX file that the
integrated application is submitting to PCCharge. Of course, when PCCharge is running and an
integrated application submits a transaction, PCCharge begins processing the transaction immediately,

thus deleting the .INX file before it can be retrieved. If PCCharge is not running, the integrated

application will indicate an error rather than submitting the transaction. To get around this, simply

close PCCharge and then delete the SYS.PCC file prior to submitting the transaction. This procedure

will circumvent the SYS.PCC check that is built into the integrated application. Once the transaction

is submitted by the integrated application, the .INX file will be placed into the PCCharge directory.
This file can now be moved or copied from the PCCharge directory. And, using the other tools

mentioned in the section, the file can be compared to other .INX files or forwarded to VeriFone, Inc.
support representatives.

PCCharge Version 5.9.0
Updated 2/8/2010

 547

Contacting Support

Although the tools noted in this section are provided to assist integrators in resolving integration issues,
it may still be necessary to contact VeriFone, Inc.‘s development support department for assistance.
Prior to contacting support, it is suggested that all logs are activated while processing the transactions
that are causing the issue(s). The logs should be reviewed by integrator and the following may be
requested by VeriFone, Inc.‘s developer support department:

 IODebug.log

 ErrLog.PCC

 Logfile.PCC

 Any .INX or .OUX files related to the transaction(s)

 Any .DUP files related to the transaction(s)

Contact information for the developer support department can be found in the section Support Policy
(see page 551).

PCCharge Version 5.9.0
Updated 2/8/2010

 548

Distribution and Deployment

VeriFone, Inc. offers a variety of distribution and deployment methods to fit the reseller‘s needs and
resources. They are designed to reduce errors, streamline logistics, reduce shipping, and maximize
deployment. VeriFone products require activation for live use. Activation requires an activation code
derived from the product‘s serial number and the individual merchant‘s account number.

Distribution Methods

Full Distribution

VeriFone‘s full distribution with packaged CD, user manual, and serial number is the traditional method
of deploying our software CD products directly to the merchants for loading, activation, setup, and
configuration. Activation information can be pre-loaded prior to shipment or loaded at the time of
installation. Setup installation includes:

 Load Software

 Activate Serial Number

 Merchant Account Number

 Activation Code

 Configure Systems

 Password and Preferences

 Queuing and Communications

 Company Information

 Address Verification

 Printers

 Modem

 Advanced Configuration

 User Setup

 Credit Setup

 Debit Setup

 Check Setup

 Other Devices

Fast Distribution

VeriFone provides streamline activation and registration of products shipped through third party
deployment to merchants. Through VeriFone fast activation, serial numbers and information is
exchanged by e-mail. Registration is completed through an Internet connection to VeriFone‘s
Registration Server. Setup installation includes:

 Load Software

 Activate with Pre-Configured Setup File with Serial Number, Merchant Account Number, and
Activation Code

 Configure Systems As Above

PCCharge Version 5.9.0
Updated 2/8/2010

 549

Master Disk Distribution

Master Disk distribution deploys products embedded into the POS or eCommerce solutions. This Master
Disk copy provides better version control and allows easier distribution with developers‘ applications.
With Master Disk, no physical packaged media is required, only the purchase of licensed serial
numbers. Activation only requires the pre-purchased serial number. Master Disk activation is
authorized for new installs only, not for upgrades of existing or previously installed licenses. Contact
your VeriFone Sales representative for more details on embedding and the Master Disk deployment
program.

Embedding

As part of the Master Disk distribution program, participating developers are authorized to embed and
automatically install one of VeriFone‗s payment processing engines (PCCharge Payment Server or
PCCharge Pro) onto each merchant‘s computer as long as the payment processing engine is configured
to run in Demo Mode. To configure either the payment processing engines to run in Demo mode,

modify the PCCharge shortcut icon to include the /d command line switch. For example:

 PCCharge Pro: "C:\Program Files\PCCW\Pccw.exe" /D

 PCCharge Payment Server: “C:\Program Files\Active-Charge” /D

Important Note: Prior to activation, the Demo mode command line switch must be deleted to enable
LIVE mode.

Demo Mode

PCCharge Payment Server or PCCharge Pro can be demonstrated in Demo Mode. In Demo Mode,
pseudo-transactions will simulate transactions with sample data without actually communicating to the
processor. Important Note: Prior to activation, the Demo mode command line switch must be deleted
to enable LIVE mode.

Evaluation Mode

VeriFone products can be set up in Evaluation Mode with the test merchant accounts. In Evaluation
Mode, PCCharge can communicate to various payment processor test sites using the modem or an
Internet connection. An actual authorization takes place, but no funds are transferred. Testing under
Evaluation Mode is reserved for developers doing interface testing and proof-of-concept testing. For
more information on setting up the test merchant accounts to enable Evaluation mode, refer to the
section Install the Test Merchant Accounts (see page 24).

Warehousing/Block Inventory

Resellers may purchase blocks of inventory to be stocked at VeriFone for later deployment. VeriFone
warehousing prevents reseller inventory from becoming obsolete. CDs are not produced until the
reseller is ready to install, thereby; the reseller always receives the most current version of our
products. With Master Disk distribution, no CDs are produced, only serial numbers that are sent to
resellers at the time of the original purchase order. At the time of installation, resellers will supply
their customers or submit activation orders to VeriFone for activation. Upon activation, one license will
be deducted from the reseller‘s block of inventory.

PCCharge Version 5.9.0
Updated 2/8/2010

 550

Activation

VeriFone products require activation, setup, and configuration to properly function. Without precise
setup and configuration, there will be a high probability that the electronic payment-processing
software will not process transactions properly. Activation cannot occur without the proper merchant
and processor information from the Merchant Services Provider. Therefore, it is very important during
the initial setup to have the information available. Accuracy and completeness in setup will yield many
dividends in reducing technical support and higher customer satisfaction.

Activation requires three components:

1. Serial Number

Example: 0002 0000 000001 51

 First 4 numbers -- Specific to company buying licenses from VeriFone.

 Second 4 numbers -- reserved for VeriFone.

 Last 8 numbers -- unique to merchant.

 Test Serial Number: 1234 1234 123456 54

2. Merchant Account Number

From the Merchant Services Provider (MSP):

The merchant account number can only come from the organization providing transaction services.
Normally, the organization sending the merchant its monthly statement will provide the merchant
account number and the processor being used.

3. Activation Code

From the combination of the Serial Number and Merchant Account Number:

At the time of installation, the activation code can be obtained from online setup options located
on VeriFone‘s website (www.pccharge.com), through the Reseller Den, or by calling the PCCharge
Technical Support department (877-659.8981). If you do not have access to the Reseller Den,
contact salesinfo@verifone.com to request your login and password for this valuable resource.

mailto:salesinfo@verifone.com

PCCharge Version 5.9.0
Updated 2/8/2010

 551

Support Policy

Philosophy

VeriFone prides itself on its exceptional customer service, and we recognize that our success in the
market is directly tied to the quality of our support. Our staff undergoes continual training not only on
our own product offerings, but also on Windows, modems, and other hardware.

Contact

Toll-Free Technical Support Line: (877) 659-8981

Toll-Free Developer Support Line: (877) 659-8983

Technical Support E-mail: support@verifone.com

Developer Support E-mail: DevSupport@verifone.com

More Information

Support Policy

The most up-to-date information about VeriFone, Inc.‘s support resources can be found on the web.
The following is a link to the Support Policy:

http://www.pccharge.com/downloads/files/SupportPolicy.pdf

Reseller Web Site

VeriFone has created a Reseller's Den. You may access the reseller‘s den at www.verifonezone.com .

Then, click the Reseller's Den link to the right of the middle of the page. To obtain a Login and
Password, you'll need to be a certified VeriFone reseller. Contact our Sales Department for more
information.

http://www.pccharge.com/downloads/files/SupportPolicy.pdf
http://www.verifonezone.com/

